A comprehensive EM300 multibeam echo-sounder dataset acquired from Cook Strait, New Zealand, is used to develop a regional-scale objective characterisation of the seafloor. Sediment samples and high-resolution seismic data are used for ground-truthing. SonarScope ® software is used to process the data, including signal corrections from sensor bias, specular reflection compensation and speckle noise filtering aiming at attenuating the effects of recording equipment, seafloor topography, and water column. The processing is completed by correlating a quantitative description (the Generic Seafloor Acoustic Backscatter-GSAB model) with the backscatter data. The calibrated Backscattering Strength (BS) is used to provide information on the physical characteristics of the seafloor. The imagery obtained from the BS statistical compensation is used for qualitative interpretation only; it helps characterizing sediment facies variations as well as geological and topographic features such as sediment waves and erosional bedforms, otherwise not recognised with the same level of detail using conventional surveying. The physical BS angular response is a good indicator of the sediment grain size and provides a first-order interpretation of the substrate composition. BS angular response for eight reference areas in the Narrows Basin are selected and parameterised using the GSAB model, and BS angular profiles for gravelly, sandy, and muddy seafloors are used as references for inferring the grain size in the reference areas. We propose to use the calibrated BS at 45° incidence angle (BS 45) and the Specular-To-Oblique Contrast (STOC) as main global descriptors of the seafloor type. These two parameters enable global backscatter studies by opposition to compensated imagery whose intensity is not comparable from one zone to the other. The results obtained highlight the interest of BS measurements for seafloor remote sensing in a context of habitat-mapping applications.
A quantitative analysis was conducted over sonar backscatter data collected on the Cook Strait region, central New Zealand, featuring multibeam (̃ 30 kHz) bathymetry and backscatter data, groundtruthed by an extensive geological database (photographs, seabed samples, high-resolution seismics). A first processing step removes the effects of the sounder, seafloor topography, and water column. A second step includes sonar image mosaicing, signal calibration and compensation, speckle noise filtering, image segmentation and textural analysis. Backscatter angular dependence is then extracted from the raw data accounting for the co-registered multibeam bathymetry; it is linked to the various facies of this geologically very active region, forming a catalogue usable for future investigation. Some local features are analysed in details, referring to the geological local context. Also the backscatter data from the Haungaroa volcano were used for a proof-of-concept biodiversity mapping exercise. Ecological theory was utilised to predict biodiversity from the seabed substrate heterogeneity, derived from the segmentation of the backscatter data properly pre-processed. The backscatter analysis resulted in the identification of local features with geological, sedimentological, topographic, and possibly biological significance, otherwise not recognised with conventional surveying. This emphasises the potential of backscatter data in submarine seismic hazard studies and large-scale biodiversity mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.