Sea-surface temperature (SST) estimates of ~30 °C from planktic foraminifera and archaeal membrane lipids in bathyal sediments in the Canterbury Basin, New Zealand, support paleontological evidence for a warm subtropical to tropical climate in the early Eocene high-latitude (55°S) southwest Pacifi c. Such warm SSTs call into question previous estimates based on oxygen isotopes and present a major challenge to climate modelers. Even under hypergreenhouse conditions (2240 ppm CO 2 ), modeled summer SSTs for the New Zealand region do not exceed 20 °C. on June 6, 2015 geology.gsapubs.org Downloaded from
Primitive or undifferentiated meteorites (chondrites) date back to the origin of the Solar System, and thus preserve a record of the physical and chemical processes that occurred during the earliest evolution of the accretion disk surrounding the young Sun. The oldest Solar System materials present within these meteorites are millimetre- to centimetre-sized calcium-aluminium-rich inclusions (CAIs) and ferromagnesian silicate spherules (chondrules), which probably originated by thermal processing of pre-existing nebula solids. Chondrules are currently believed to have formed approximately 2-3 million years (Myr) after CAIs (refs 5-10)--a timescale inconsistent with the dynamical lifespan of small particles in the early Solar System. Here, we report the presence of excess (26)Mg resulting from in situ decay of the short-lived (26)Al nuclide in CAIs and chondrules from the Allende meteorite. Six CAIs define an isochron corresponding to an initial (26)Al/(27)Al ratio of (5.25 +/- 0.10) x 10(-5), and individual model ages with uncertainties as low as +/- 30,000 years, suggesting that these objects possibly formed over a period as short as 50,000 years. In contrast, the chondrules record a range of initial (26)Al/(27)Al ratios from (5.66 +/- 0.80) to (1.36 +/- 0.52) x 10(-5), indicating that Allende chondrule formation began contemporaneously with the formation of CAIs, and continued for at least 1.4 Myr. Chondrule formation processes recorded by Allende and other chondrites may have persisted for at least 2-3 Myr in the young Solar System.
Long- and short-lived radioactive isotopes and their daughter products in meteorites are chronometers that can test models for Solar System formation. Differentiated meteorites come from parent bodies that were once molten and separated into metal cores and silicate mantles. Mineral ages for these meteorites, however, are typically younger than age constraints for planetesimal differentiation. Such young ages indicate that the energy required to melt their parent bodies could not have come from the most likely heat source-radioactive decay of short-lived nuclides ((26)Al and (60)Fe) injected from a nearby supernova-because these would have largely decayed by the time of melting. Here we report an age of 4.5662 +/- 0.0001 billion years (based on Pb-Pb dating) for basaltic angrites, which is only 1 Myr younger than the currently accepted minimum age of the Solar System and corresponds to a time when (26)Al and (60)Fe decay could have triggered planetesimal melting. Small (26)Mg excesses in bulk angrite samples confirm that (26)Al decay contributed to the melting of their parent body. These results indicate that the accretion of differentiated planetesimals pre-dated that of undifferentiated planetesimals, and reveals the minimum Solar System age to be 4.5695 +/- 0.0002 billion years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.