Background-Angiogenesis is a critical feature of plaque development in atherosclerosis and might play a key role in both the initiation and later rupture of plaques that lead to myocardial infarction and stroke. The precursory molecular or cellular events that initiate plaque growth and that ultimately contribute to plaque instability, however, cannot be detected directly with any current diagnostic modality. Methods and Results-Atherosclerosis was induced in New Zealand White rabbits fed 1% cholesterol for Ϸ80 days.␣ v  3 -Integrin-targeted, paramagnetic nanoparticles were injected intravenously and provided specific detection of the neovasculature within 2 hours by routine magnetic resonance imaging (MRI) at a clinically relevant field strength (1.5 T). Increased angiogenesis was detected as a 47Ϯ5% enhancement in MRI signal averaged throughout the abdominal aortic wall among rabbits that received ␣ v  3 -targeted, paramagnetic nanoparticles. Pretreatment of atherosclerotic rabbits with ␣ v  3 -targeted, nonparamagnetic nanoparticles competitively blocked specific contrast enhancement of the ␣ v  3 -targeted paramagnetic agent. MRI revealed a pattern of increased ␣ v  3 -integrin distribution within the atherosclerotic wall that was spatially heterogeneous along both transverse and longitudinal planes of the abdominal aorta. Histology and immunohistochemistry confirmed marked proliferation of angiogenic vessels within the aortic adventitia, coincident with prominent, neointimal proliferation among cholesterol-fed, atherosclerotic rabbits in comparison with sparse incidence of neovasculature in the control animals. Conclusions-This molecular imaging approach might provide a method for defining the burden and evolution of atherosclerosis in susceptible individuals as well as responsiveness of individual patients to antiatherosclerotic therapies.
Before molecular imaging with MRI can be applied clinically, certain problems, such as the potential sparseness of molecular epitopes on targeted cell surfaces, and the relative weakness of conventional targeted MR contrast agents, must be overcome. Accordingly, the conditions for diagnostic conspicuity that apply to any paramagnetic MRI contrast agent with known intrinsic relaxivity were examined in this study. A highly potent paramagnetic liquid perfluorocarbon nanoparticle contrast agent (ϳ250 nm diameter, >90000 Gd 3؉ /particle) was imaged at 1.5 T and used to successfully predict a range of sparse concentrations in experimental phantoms with the use of standard MR signal models. Additionally, we cultured and targeted the smooth muscle cell (SMC) monolayers that express "tissue factor," a glycoprotein of crucial significance to hemostasis and response to vascular injury, by conjugating an anti-tissue factor antibody fragment to the nanoparticles to effect specific bind-
Unstable atherosclerotic plaques exhibit microdeposits of fibrin that may indicate the potential for a future rupture. However, current methods for evaluating the stage of an atherosclerotic lesion only involve characterizing the level of vessel stenosis, without delineating which lesions are beginning to rupture. Previous work has shown that fibrin-targeted, liquid perfluorocarbon nanoparticles, which carry a high payload of gadolinium, have a high sensitivity and specificity for detecting fibrin with clinical 1 H MRI. In this work, the perfluorocarbon content of the targeted nanoparticles is exploited for the purposes of 19 F imaging and spectroscopy to demonstrate a method for quantifiable molecular imaging of fibrin in vitro at 4.7 T. Additionally, the quantity of bound nanoparticles formulated with different perfluorocarbon species was calculated using spectroscopy. Results indicate that the high degree of nanoparticle binding to fibrin clots and the lack of background 19 F signal allow accurate quantification using spectroscopy at 4.7 T, as corroborated with proton relaxation rate measurements at 1.5 T and trace element (gadolinium) analysis. Finally, the extension of these techniques to a clinically relevant application, the evaluation of the fibrin burden within an ex vivo human carotid endarterectomy sample, demonstrates the potential use of these particles for uniquely identifying unstable atherosclerotic lesions in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.