Qualitative and quantitative properties of the finite part, H(f), of the Shannon entropy of a continuous waveform f(t) in the continuum limit are derived in order to illuminate its use for waveform characterization. Simple upper and lower bounds on H(f), based on features of f(t), are defined. Quantitative criteria for a priori estimation of the average-case variation of H(f) and log E(f), where E(f) is the signal energy of f(t) are also derived. These provide relative sensitivity estimates that could be used to prospectively choose optimal imaging strategies in real-time ultrasonic imaging machines, where system bandwidth is often pushed to its limits. To demonstrate the utility of these sensitivity relations for this application, a study designed to assess the feasibility of identification of angiogenic neovasculature targeted with perfluorocarbon nanoparticles that specifically bind to alpha(v)beta3-integrin expression in tumors was performed. The outcome of this study agrees with the prospective sensitivity estimates that were used for the two receivers. Moreover, these data demonstrate the ability of entropy-based signal receivers when used in conjunction with targeted nanoparticles to elucidate the presence of alpha(v)beta3 integrins in primordial neovasculature, particularly in acoustically unfavorable environments.
Previous work has demonstrated that a signal receiver based on a limiting form of the Shannon entropy is, in certain settings, more sensitive to subtle changes in scattering architecture than conventional energy-based signal receivers ͓M. S. Hughes et al., J. Acoust. Soc. Am. 121, 3542-3557 ͑2007͔͒. In this paper new results are presented demonstrating further improvements in sensitivity using a signal receiver based on the Renyi entropy.
Previously a new method for ultrasound signal characterization using entropy H f was reported, and it was demonstrated that in certain settings, further improvements in signal characterization could be obtained by generalizing to Renyi entropy-based signal characterization I f ͑r͒ with values of r near 2 ͑specifically r = 1.99͒ ͓M. S. Hughes et al., J. Acoust. Soc. Am. 125, 3141-3145 ͑2009͔͒. It was speculated that further improvements in sensitivity might be realized at the limit r → 2. At that time, such investigation was not feasible due to excessive computational time required to calculate I f ͑r͒ near this limit. In this paper, an asymptotic expression for the limiting behavior of I f ͑r͒ as r → 2 is derived and used to present results analogous to those obtained with I f ͑1.99͒. Moreover, the limiting form I f,ϱ is computable directly from the experimentally measured waveform f͑t͒ by an algorithm that is suitable for real-time calculation and implementation.
BACKGROUND: There is need for an artificial oxygen (O2) carrier for use when: stored blood is unavailable or undesirable. To date, efforts to develop hemoglobin (Hb) based oxygen carriers (HBOCs) have failed, because of design flaws which do not preserve physiologic interactions of Hb with: O2 (they capture O2 in lungs, but do not release O2 effectively to tissue) and nitric oxide (NO) (they trap NO, causing vasoconstriction). EM design surmounts these weaknesses by: encapsulating Hb, controlling O2 capture/release with a novel 2,3-DPG shuttle and attenuating NO uptake through shell properties. METHODS: The EM prototype and its lyophilized form were analyzed: (1) structurally (dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM)), as well as for: (2) payload retention (Drabkin), (3) biocompatibility (ex vivo complement activation), (4) O2 affinity (p50, Hill n, Adair), (5) rheology (cone and plate viscometer in rabbit plasma), (6) NO consumption (chemiluminescence), (7) pharmacokinetic (PK) profile (tracking 99mTc-labeled EM in rats), and (8) in vivo O2 delivery (two rodent models: hemorrhagic shock [rats, instrumented for tissue pO2] and hemodilution [bioluminescent HIF-1α reporter mice]). RESULTS: EM was structurally stable (size: 175±10 nm; polydispersity: 0.26±0.0 by DLS, confirmed by TEM and AFM; zeta potential: 12±2 mV). After 3 months storage, we observed nominal change (<10%) in size, zeta potential, or polydispersity. CH50 (complement activation) results were indistinguishable from negative controls and we observed no impact on plasma viscosity (1:10 and 1:5 dilution). p50 was calculated to be 21.46±2.75 Torr (control RBC p50: 23.63±1.84); EM Hill & Adair also similar to control RBC. Two compartment PK modeling in rats resulted in good fit, with distribution t1/2=26.2±3.6 min and elimination t1/2=300±12 min (R2>0.96); which is likely to translate to a t1/2 in humans of ~ 3h. EM NO sequestration varied as a function of shell crosslinking and was below the rate observed for RBCs. In our hemorrhagic shock model in fully instrumented SD Rats (400g), 40% blood volume was removed; animals were then resuscitated with an equal volume of EM (N=6) or normal saline (N=6). EM was suspended at 40 wt/vol%, [Hb]=4mM. EM infusion rapidly stabilized hemodynamics. During the 1st hour, we observed resolution of both lactic acidosis (3.2±1.5 v 8.2±2.1 mM) [for EM and NS, respectively, throughout] and elevated AV O2 difference (24±11 v 67±23%) as well as improved brain pO2 (30.5±1.4 v 17.2±1.3 Torr); p<0.05, RMANOVA, for all. Hemodilution model:Un-instrumented, HIF-1α (ODD) luciferase mice underwent hemodilution (70% v/v) with pentastarch, fresh blood (autotransfusion controls), or EM [N=6, all groups];Hb target nadir was reached (5 mg/dL). To detect whole body luciferase expression, D-luciferin (50 mg/kg, IP) was injected, then serial images were obtained (IVIS, Living Image). HIF-luc radiance was significantly higher in the HES group than in autotransfusion and EM groups, which did not differ (p<0.01, RMANOVA). CONCLUSIONS: The ErythroMer prototype has passed rigorous initial ex vivo and in vivo "proof of concept" testing and bench testing, which suggests this design surmounts prior challenges (by HBOCs) in emulating normal RBC physiologic interactions with O2 and NO. In models of major bleeding/anemia, EM reconstitutes normal hemodynamics and O2 delivery, observed at the system, tissue, and cellular level. EM potential for extended ambient dry storage has significant implications for portability and use. Next steps include formulation scaling, detailed study of pharmacokinetics, biodistribution and safety, as well as evaluation in large animal models of hemorrhagic shock. Disclosures Pan: KaloCyte, Inc.: Equity Ownership; Children's Discovery Institute: Research Funding; National Institutes of Health: Research Funding. Spinella:KaloCyte, Inc.: Equity Ownership; Children's Discovery Institute: Research Funding; National Institutes of Health: Research Funding. Hare:Children's Discovery Institute: Research Funding. Lanza:KaloCyte, Inc.: Membership on an entity's Board of Directors or advisory committees; National Institutes of Health: Research Funding. Doctor:KaloCyte, Inc.: Equity Ownership; Children's Discovery Institute: Research Funding; National Institutes of Health: Research Funding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.