The relationships between smoking and the expression of glutathione S-transferase (GST*) isozymes GSTM1-1, GSTM3-3, GSTP1-1 and GSTA1-1/2-2 (GSTA1/2), or between smoking and activities of epoxide hydrolase (EH) and aryl hydrocarbon hydroxylase (AHH) were investigated in lung samples from 27 patients with lung cancer and 11 control patients by immunoblot analysis and enzyme assays. Determination of genotypes in blood leucocyte DNA showed that possession of the mu-class GSTM1 gene was closely related to the expression of GSTM1-1 and GSTM3-3 enzymes in lung cytosol: patients with the GSTM1 null genotype had no detectable GSTM1 protein and less GSTM3 protein than patients with the GSTM1 gene (P < 0.001). Absence of the GSTM1 gene did not affect the content of phi-class GSTP1-1 or alpha-class GSTA1/2. GST activity towards 1-chloro-2,4-dinitrobenzene was lower (P < 0.01) in patients lacking the GSTM1 gene than in those expressing GSTM1; in general, patients with a low GSTM3-3, GSTP1-1 or GSTA1/2 content also had significantly less overall GST activity. The pulmonary content of GSTP1-1 was greater in cancer than in non-cancer patients (P < 0.05). Smoking did not influence the levels of GST isozymes or the EH activity. In contrast, the AHH activity was significantly (P < 0.01) increased by smoking. Neither AHH nor EH showed a correlation with GSTM1 polymorphism. Our data support the idea that in smokers who lack the GSTM1 gene, activation of carcinogens in tobacco smoke (e.g. benzo[alpha]pyrene) is increased, while the efficacy of detoxification is limited both qualitatively (absence of GSTM1-1 enzyme and low expression of GSTM3-3 enzyme) and quantitatively (low overall GST activity). This imbalance in the metabolism of carcinogens may explain the increased susceptibility to lung cancer reported in smokers with the GSTM1 null genotype.
We undertook this study to answer several questions regarding nitrosamine metabolism. Kinetics of nitrosamine metabolism showed the involvement of at least two enzymes in the dealkylation of N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA) in mouse liver microsomes. Coumarin inhibited both reactions competitively. On the other hand, microsomal coumarin 7-hydroxylase was inhibited by NDMA (Ki 2.7 mM) and NDEA (Ki 0.013 mM). The big difference in the Ki values suggests a higher affinity of NDEA than NDMA to Cyp2a-5 (mouse cytochrome P450coh). A specific antibody against Cyp2a-5 inhibited more of the microsomal NDEA (up to 90%) than NDMA (up to 40%) dealkylation. The converse was true with anti-Cyp2e-1 antibody. These results suggest that the primary substrate for Cyp2a-5 is NDEA and for Cyp2e-1, NDMA. Western blot analysis of human liver microsomes showed a great interindividual variation in the amounts of CYP2A6 (human cytochrome P450coh) and CYP2E1. Also, coumarin 7-hydroxylation and nitrosamine dealkylation varied greatly among individuals. A high correlation (r = 0.93, P < 0.001) was found between NDEA and coumarin metabolism. Both activities were associated with CYP2A6. On the other hand, little or no correlation was found between microsomal CYP2A6 and CYP2E1 or between CYP2E1 and NDEA dealkylation. Immunoinhibition of human microsomal NDEA metabolism by CYP2a-5 antibody varied greatly among individuals (10-90%), suggesting, as in the case of mice, that NDEA is metabolized primarily by CYP2A6, at least in some individuals. Taken together the data suggest that (1) the metabolic activation of nitrosamines in humans varies greatly among individuals; (2) different nitrosamines may partially be metabolized by different cytochrome P450 isozymes; and (3) because of similarities between nitrosamine metabolism in mice and humans, inbred strains of mice would be relevant experimental models for studying nitrosamine activation.
A specific member of the cytochrome P450 superfamily of enzymes, designated P450IA (including 2 isozymes, P450IA1 and P450IA2), which is involved in the metabolic activation of polycyclic aromatic hydrocarbons and aromatic amines, was studied in lung tissue from 25 lung cancer patients by immunohistochemistry. The pulmonary activity of a P450IA1-dependent enzyme, aryl hydrocarbon hydroxylase (AHH), from the same patients was also measured. Cytochrome P450IA was localized principally in the peripheral airways in alveolar epithelium of types I and II and in ciliated columnar and cuboidal bronchiolar epithelium. The amount of P450IA in the bronchial wall was minimal and was localized mainly in the capillary endothelium and the epithelium of the bronchial glands. Smoking was the most important factor related to the presence of P450IA and the AHH activity in lung tissue. None of the 10 ex-smokers, but all except I of the current smokers had detectable level of P450IA. The localization of the cancer was also correlated with the presence of cytochrome P450IA. Peripheral lung tissue stained positively in all patients with a peripheral adenocarcinoma who currently smoked (8/8) but in less than half of those with a bronchial cancer who were smokers (3/7). Our data suggest that the smokers who have an inducible cytochrome P450IA are especially at increased risk of developing lung cancer of the peripheral adenocarcinomatous type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.