Despite affecting millions of patients worldwide, no pharmacological treatment has yet proved effective against non-alcoholic steatohepatitis (NASH) induced liver fibrosis. Current guidelines recommend lifestyle modifications including reductions in dietary energy intake. Recently, therapy with atorvastatin and vitamin E (vitE) has been recommended, although clinical studies on the resolution of hepatic fibrosis are inconclusive. Targeting NASH-induced hepatic end-points, this study evaluated the effects of atorvastatin and vitE alone or in combination with a dietary intervention in the guinea pig NASH model. Guinea pigs (n = 72) received 20 weeks of high fat feeding before allocating to four groups: continued HF feeding (HF), HF diet with atorvastatin and vitE (HF+), low-fat diet (LF) and low-fat with atorvastatin and vitE (LF+), for four or eight weeks of intervention. Both LF and LF+ decreased liver weight, cholesterol and plasma dyslipidemia. LF+ further improved hepatic histopathological hallmarks (p < 0.05), liver injury markers aspartate aminotransferase (AST) and alanine aminotransferase (ALT) (p < 0.05) and reduced the expression of target genes of hepatic inflammation and fibrosis (p < 0.05), underlining an increased effect on NASH resolution in this group. Collectively, the data support an overall beneficial effect of diet change, and indicate that atorvastatin and vitE therapy combined with a diet change act synergistically in improving NASH-induced endpoints.
Although commonly associated with obesity, non-alcoholic fatty liver disease (NAFLD) is also present in the lean population representing a unique disease phenotype. Affecting 25% of the world's population, NAFLD is associated with increased mortality especially when progressed to non-alcoholic steatohepatitis (NASH). However, no approved pharmacological treatments exist. Current research focuses mainly on NASH associated with obesity, leaving the effectiveness of promising treatments in lean NASH virtually unknown. This study therefore aimed to evaluate the effect of liraglutide (glucagon-like peptide 1 analogue) and dietary intervention, alone and in combination, in guinea pigs with non-obese NASH. After 20 weeks of high-fat feeding (20% fat, 15% sucrose, 0.35% cholesterol), 40 female guinea pigs were block-randomized based on weight into four groups receiving one of four treatments for 4 weeks: continued high-fat diet (HF, control), high-fat diet and liraglutide treatment (HFL), chow diet (4% fat, 0% sucrose, 0% cholesterol; HFC) or chow diet and liraglutide treatment (HFCL). High-fat feeding induced NASH with severe fibrosis. Liraglutide decreased inflammation (p < 0.05) and hepatocyte ballooning (p < 0.05), while increasing hepatic α-tocopherol (p = 0.0154). Dietary intervention did not improve liver histopathology significantly, but decreased liver weight (p = 0.004), plasma total cholesterol (p = 0.0175), LDL-cholesterol (p = 0.0063), VLDL-cholesterol (p = 0.0034), hepatic cholesterol (p < 0.0001) and increased hepatic vitamin C (p = 0.0099). Combined liraglutide and dietary intervention induced a rapid weight loss, necessitating periodical liraglutide dose adjustment/discontinuation, limiting the strength of the findings from this group. Collectively, this pre-clinical study supports the beneficial effect of liraglutide on NASH and extends this notion to lean NASH.
Coenzyme Q10 (Q10) plays an important role in mammals for energy production in the mitochondria, and as a potent antioxidant. Oxidation ratio (% oxidized in relation to total Q10) has been proposed as an important biomarker. A sensitive and reproducible HPLC-ECD method was developed for determination of reduced and oxidized Q10 in canine plasma and heart tissue. Chromatographic separation was achieved in 10 min using a Waters Nova-pak C18 column and a mobile phase with lithium perchlorate in ethanol/methanol/2-propanol. The validation showed satisfying results. Excellent linear correlation was found (r2 > 0.9997), intra- and inter-day precisions were below 6.5% (n = 5) and recoveries were between 89 and 109% (n = 5). Sensitivity stated as Lower Limit of Quantification (LLOQ) was 10 nM. Acceptable stability of both extracted and un-extracted samples was observed. The plasma concentration range of total Q10 was found to be between 0.64 and 1.24 µg/mL. Comparison with a developed LC-MS/MS method showed a correlation of r = 0.85 for reduced Q10 and r = 0.60 for oxidized Q10 (N = 17). However, average results were around 30% lower for ubiquinol using the LC-MS/MS method as compared with the HPLC-ECD analysis. The two methods are therefore not considered to be interchangeable.
Background: Preoperative endothelial dysfunction is a predictor of myocardial injury and major adverse cardiac events. Non-cardiac surgery is known to induce acute endothelial changes. The aim of this explorative cohort study was to assess the extent of systemic endothelial dysfunction after major emergency abdominal surgery and the potential association with postoperative myocardial injury.Methods: Patients undergoing major emergency abdominal surgery were included in this prospective cohort study. The primary outcome was the change in endothelial function expressed as the reactive hyperemia index from 4-24 h after surgery until postoperative day 3-5. The reactive hyperemia index was assessed by non-invasive digital pulse tonometry. Secondary outcomes included changes in biomarkers of nitric oxide metabolism and bioavailability. All assessments were performed at the two separate time points in the postoperative period. Clinical outcomes included myocardial injury within the third postoperative day and major adverse cardiovascular events within 30 days of surgery. Results: Between October 2016 and June 2017, 83 patients were included. The first assessment of the endothelial function, 4-24 h, was performed 15.8 (SD 6.9) hours after surgery and the second assessment, postoperative day 3-5, was performed 83.7 (SD 19.8) hours after surgery. The reactive hyperemia index was suppressed early after surgery and did not increase significantly; 1.64 (95% CI 1.52-177) at 4-24 h after surgery vs. 1.75 (95% CI 1.63-1.89) at postoperative day 3-5, p = 0.34. The L-arginine/ADMA ratio, expressing the nitric oxide production, was reduced in the perioperative period and correlated significantly with the reactive hyperemia index. A total of 16 patients (19.3%) had a major adverse cardiovascular event, of which 11 patients (13.3%) had myocardial injury. The Larginine/ADMA ratio was significantly decreased at 4-24 h after surgery in patients suffering myocardial injury.Conclusion: This explorative pathophysiological study showed that acute systemic endothelial dysfunction was present early after major emergency abdominal surgery and remained unchanged until day 3-5 after the procedure. Early postoperative disturbances in the nitric oxide bioavailability might add to the pathogenesis of myocardial injury. This pathophysiological link should be confirmed in larger studies. Trial registration: clinicaltrials.gov no. NCT03010969.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.