Sedentary lifestyle accelerates biological ageing, is a major risk factor for developing metabolic syndrome and is associated with cardiovascular disease, diabetes mellitus, kidney failure, sarcopenia and osteoporosis. In contrast to the linear path to worsening health in humans with metabolic syndrome, brown bears have developed a circular metabolic plasticity enabling these animals to tolerate obesity and a ‘sedentary lifestyle’ during hibernation and exit the den metabolically healthy in spring. Bears are close to humans physiology wise, much closer than rodents, the preferred experimental animals in medical research, and may better serve as translational model to develop treatments for lifestyle‐related diseases. In this review, aspects of brown bear hibernation survival strategies are outlined and conceivable experimental strategies to learn from bears are described.
Brown bears hibernate throughout half of the year as a survival strategy to reduce energy consumption during prolonged periods with scarcity of food and water. Thyroid hormones are the major endocrine regulators of basal metabolic rate in humans. Therefore, we aimed to determine regulations in serum thyroid hormone levels in hibernation compared to the active state to investigate if these are involved in the adaptions for hibernation.We used electrochemiluminescence immunoassay to quantify total triiodothyronine (T3) and thyroxine (T4) levels in hibernation and active state in paired serum samples from six subadult Scandinavian brown bears. Additionally, we determined regulations in the liver mRNA levels of three major thyroid hormone-binding proteins; thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin, by analysis of previously published grizzly bear RNA sequencing data.We found that bears were hypothyroid when hibernating with T4 levels reduced to less than 44% (P = 0.008) and T3 levels reduced to less than 36% (P = 0.016) of those measured in the active state. In hibernation, mRNA levels of TBG and albumin increased to 449% (P = 0.031) and 121% (P = 0.031), respectively, of those measured in the active state. TTR mRNA levels did not change.Hibernating bears are hypothyroid and share physiologic features with hypothyroid humans, including decreased basal metabolic rate, bradycardia, hypothermia, and fatigue. We speculate that decreased thyroid hormone signaling is a key mediator of hibernation physiology in bears. Our findings shed light on the translational potential of bear hibernation physiology to humans for whom a similar hypometabolic state could be of interest in specific conditions.
Brown bears conserve muscle and bone mass during six months of inactive hibernation. The molecular mechanisms underlying hibernation physiology may have translational relevance for human therapeutics. We hypothesize that protective mechanisms involve increased tissue availability of the insulin-like growth factors (IGFs). In subadult Scandinavian Brown Bears, we observed that mean plasma IGF-1 and IGF-2 during hibernation was reduced to 36±10% and 56±15%, respectively, compared to the active state (N=12). Western ligand blotting identified IGFBP-3 as the major IGF binding protein in the active state, while IGFBP-2 was co-dominant during hibernation. Acid labile subunit (ALS) levels in hibernation were 41±16% those of the active state (N=6). Analysis of available grizzly bear RNA sequencing data revealed unaltered liver mRNA IGF-1, IGFBP-2, and IGFBP-3 levels, whereas ALS was significantly reduced during hibernation (N=6). Reduced ALS synthesis and circulating levels during hibernation should prompt a shift from ternary IGF/IGFBP/ALS to smaller binary IGF/IGFBP complexes, thereby increasing IGF tissue availability. Indeed, Size Exclusion Chromatography of bear plasma, demonstrate a shift to lower molecular weight IGF-containing complexes in the hibernating versus the active state. Further, we note that the major IGF-2 mRNA isoform expressed in liver in both Scandinavian brown bears and grizzly bears was an alternative splice variant in which Ser29 was replaced with a tetrapeptide possessing a positively charged Arg residue. Homology modelling of the bear IGF-2/IGFBP-2 complex showed the tetrapeptide in proximity to the heparin binding domain involved in bone-specific targeting of this complex. In conclusion, this study provides data which suggest that increased IGF tissue availability combined with tissue-specific targeting contribute to tissue preservation in hibernating bears.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.