Based on its RARγ selectivity, rapid degradation in human hepatic microsomes and pharmacological properties including potent modulation of epidermal processes, topical treatment with trifarotene could result in good efficacy and may present a favourable safety profile in acne and ichthyotic disorders.
Endosulfan is an organochlorine insecticide described as a potential carcinogen in humans. This insecticide was recently reported to alter the mitogen-activated protein (MAP) kinase signaling pathways and is suspected to affect cell growth and differentiation in human keratinocytes. This study was designed to assess the mitogenic, apoptogenic, and genotoxic effects of endosulfan on the HaCaT cell line. We first found that 25 microM endosulfan led to persistent extracellular signal-regulated kinase (ERK)1/2 phosphorylation with an accumulation of the phosphorylated form in the nucleus, probably caused by MAP kinase phosphatase (MKP) inhibition. As previously described under sustained ERK1/2 activation, cell growth was decreased: delayed confluency and 35% decrease of BrdU incorporation was demonstrated in endosulfan-treated keratinocytes. In addition, endosulfan has been shown to generate transient reactive oxygen species (ROS), and blocking this oxidative stress by N-acetyl cysteine (NAC) strongly prevented both persistent nuclear ERK1/2 phosphorylation and cell growth decrease. Additional experiments demonstrated that unchanged endosulfan rather than its metabolites has mutagenic effects (Ames positive without S9) and increased DNA strand breaks (Comet assay) in HaCaT cells, via a ROS-dependent mechanism. Therefore, to assess the putative pro-apoptotic response of damaged cells, caspases 3/7 activity and poly(ADP-ribose)-polymerase (PARP) cleavage were measured. The results clearly indicated that endosulfan inhibited both spontaneous and staurosporine-induced apoptosis. Taken together, these findings strongly support that endosulfan induces ROS generation leading to sustained ERK1/2 phosphorylation and decrease in cell growth. Moreover, endosulfan was found to inhibit apoptosis and this could contribute to mutant cell survival and therefore have possible carcinogenic effects.
The use of an interleukin β antibody is currently being investigated in the clinic for the treatment of acne, a dermatological disorder affecting 650M persons globally. Inhibiting the protease responsible for the cleavage of inactive pro-IL1β into active IL-1β, caspase-1, could be an alternative small molecule approach. This report describes the discovery of uracil 20, a potent (38 nM in THP1 cells assay) caspase-1 inhibitor for the topical treatment of inflammatory acne. The uracil series was designed according to a published caspase-1 pharmacophore model involving a reactive warhead in P1 for covalent reversible inhibition and an aryl moiety in P4 for selectivity against the apoptotic caspases. Reversibility was assessed in an enzymatic dilution assay or by using different substrate concentrations. In addition to classical structure-activity-relationship exploration, topical administration challenges such as phototoxicity, organic and aqueous solubility, chemical stability in solution, and skin metabolic stability are discussed and successfully resolved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.