Rosacea is a common skin disease with a high impact on quality of life. Characterized by erythema, edema, burning pain, immune infiltration, and facial skin fibrosis, rosacea has all the characteristics of neurogenic inflammation, a condition induced by sensory nerves via antidromically released neuromediators. To investigate the hypothesis of a central role of neural interactions in the pathophysiology, we analyzed molecular and morphological characteristics in the different subtypes of rosacea by immunohistochemistry, double immunofluorescence, morphometry, real-time PCR, and gene array analysis, and compared the findings with those for lupus erythematosus or healthy skin. Our results showed significantly dilated blood and lymphatic vessels. Signs of angiogenesis were only evident in phymatous rosacea. The number of mast cells and fibroblasts was increased in rosacea, already in subtypes in which fibrosis is not clinically apparent, indicating early activation. Sensory nerves were closely associated with blood vessels and mast cells, and were increased in erythematous rosacea. Gene array studies and qRT-PCR confirmed upregulation of genes involved in vasoregulation and neurogenic inflammation. Thus, dysregulation of mediators and receptors implicated in neurovascular and neuroimmune communication may be crucial at early stages of rosacea. Drugs that function on neurovascular and/or neuroimmune communication may be beneficial for the treatment of rosacea.
The multilineage differentiation capacity of mouse embryonic stem (ES) cells offers a potential testing platform for gene products that mediate mammalian lineage determination and cellular specialization. Identification of such differentiation regulators is crucial to harnessing ES cells for pharmaceutical discovery and cell therapy. Here we describe the use of episomal expression technology for functional evaluation of cDNA clones during ES-cell differentiation in vitro. Several candidate cDNAs identified by subtractive cloning and expression profiling were introduced into ES cells in episomal expression constructs. Subsequent differentiation revealed that the Wnt antagonist Sfrp2 stimulates production of neural progenitors. The significance of this observation was substantiated by forced expression of Wnt-1 and treatment with lithium chloride, both of which inhibit neural differentiation. These findings reveal the importance of Wnt signaling in regulating ES-cell lineage diversification. More generally, this study establishes a path for rapid and direct validation of candidate genes in ES cells.
Rosacea is a chronic inflammatory skin disease of unknown etiology. Although described centuries ago, the pathophysiology of this disease is still poorly understood. Epidemiological studies indicate a genetic component, but a rosacea gene has not been identified yet. Four subtypes and several variants of rosacea have been described. It is still unclear whether these subtypes represent a “developmental march” of different stages or are merely part of a syndrome that develops independently but overlaps clinically. Clinical and histopathological characteristics of rosacea make it a fascinating “human disease model” for learning about the connection between the cutaneous vascular, nervous, and immune systems. Innate immune mechanisms and dysregulation of the neurovascular system are involved in rosacea initiation and perpetuation, although the complex network of primary induction and secondary reaction of neuroimmune communication is still unclear. Later, rosacea may result in fibrotic facial changes, suggesting a strong connection between chronic inflammatory processes and skin fibrosis development. This review highlights recent molecular (gene array) and cellular findings and aims to integrate the different body defense mechanisms into a modern concept of rosacea pathophysiology.
Rosacea is a common chronic inflammatory skin disease of unknown etiology. Our knowledge about an involvement of the adaptive immune system is very limited. We performed detailed transcriptome analysis, quantitative real-time reverse-transcriptase-PCR, and quantitative immunohistochemistry on facial biopsies of rosacea patients, classified according to their clinical subtype. As controls, we used samples from patients with facial lupus erythematosus and healthy controls. Our study shows significant activation of the immune system in all subtypes of rosacea, characterizing erythematotelangiectatic rosacea (ETR) already as a disease with significant influx of proinflammatory cells. The T-cell response is dominated by Th1/Th17-polarized immune cells, as demonstrated by significant upregulation of IFN-γ or IL-17, for example. Chemokine expression patterns support a Th1/Th17 polarization profile of the T-cell response. Macrophages and mast cells are increased in all three subtypes of rosacea, whereas neutrophils reach a maximum in papulopustular rosacea. Our studies also provide evidence for the activation of plasma cells with significant antibody production already in ETR, followed by a crescendo pattern toward phymatous rosacea. In sum, Th1/Th17 polarized inflammation and macrophage infiltration are an underestimated hallmark in all subtypes of rosacea. Therapies directly targeting the Th1/Th17 pathway are promising candidates in the future treatment of this skin disease.
The transcription factor Sox1 is the earliest and most specific known marker for mammalian neural progenitors. During fetal development, Sox1 is expressed by proliferating progenitor cells throughout the central nervous system and in no tissue but the lens. We generated a reporter mouse line in which egfp is inserted into the Sox1 locus. Sox1 GFP animals faithfully recapitulate the expression of the endogenous gene. We have used the GFP reporter to purify neuroepithelial cells by fluorescence-activated cell sorting from embryonic day 10.5 embryos. RNAs prepared from Sox1 GFP؉ and Sox1 GFP؊ embryo cells were then used to perform a pilot screen of subtracted cDNAs prepared from differentiating embryonic stem cells and arrayed on a glass chip. Fifteen unique differentially expressed genes were identified, all previously associated with fetal or adult neural tissue. Whole mount in situ hybridization against two genes of previously unknown embryonic expression, Lrrn1 and Musashi2, confirmed the selectivity of this screen for early neuroectodermal markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.