Background
Although the cytokine, interleukin-31 (IL-31), has been implicated in inflammatory and lymphoma-associated itch, the cellular basis for its pruritic action is yet unclear.
Objective
To determine whether immune cell-derived IL-31 directly stimulates sensory neurons, and to identify the molecular basis of IL-31-induced itch.
Methods
We used immunohistochemistry and qRTPCR to determine IL-31 expression levels in mice and humans. Immunohistochemistry, immunofluorescence, qRTPCR, in vivo pharmacology, western blotting, single cell calcium and electrophysiology were used to examine the distribution, functionality and cellular basis of the neuronal IL-31 receptor (IL-31RA) in mice and humans.
Results
Among all immune and resident skin cells examined, IL-31 was predominantly produced by TH2 and to a significantly lesser extend by mature dendritic cells. Cutaneous and intrathecal injections of IL-31 evoked intense itch, and its concentration increased significantly in murine atopic-like dermatitis skin. Both human and mouse DRG neurons express IL-31RA, largely in neurons that co-express TRPV1. IL-31-induced itch was significantly reduced in TRPV1- and TRPA1-deficient mice, not c-kit or PAR-2 mice. In cultured primary sensory neurons, IL-31 triggered Ca2+-release and ERK1/2 phosphorylation, Inhibition of which blocked IL-31 signaling in vitro and reduced IL-31-induced scratching in vivo.
Conclusion
IL-31RA is a functional receptor expressed by a small subpopulation of IL-31RA+/TRPV1+/TRPA1+ neurons, and is a critical neuro-immune link between TH2 cells and sensory nerves for the generation of T cell-mediated itch. Thus, targeting neuronal IL-31RA may be effective in the management of TH2-mediated itch, including atopic dermatitis and cutaneous T cell lymphoma.
Rosacea is a common chronic inflammatory skin disease of unknown etiology. Our knowledge about an involvement of the adaptive immune system is very limited. We performed detailed transcriptome analysis, quantitative real-time reverse-transcriptase-PCR, and quantitative immunohistochemistry on facial biopsies of rosacea patients, classified according to their clinical subtype. As controls, we used samples from patients with facial lupus erythematosus and healthy controls. Our study shows significant activation of the immune system in all subtypes of rosacea, characterizing erythematotelangiectatic rosacea (ETR) already as a disease with significant influx of proinflammatory cells. The T-cell response is dominated by Th1/Th17-polarized immune cells, as demonstrated by significant upregulation of IFN-γ or IL-17, for example. Chemokine expression patterns support a Th1/Th17 polarization profile of the T-cell response. Macrophages and mast cells are increased in all three subtypes of rosacea, whereas neutrophils reach a maximum in papulopustular rosacea. Our studies also provide evidence for the activation of plasma cells with significant antibody production already in ETR, followed by a crescendo pattern toward phymatous rosacea. In sum, Th1/Th17 polarized inflammation and macrophage infiltration are an underestimated hallmark in all subtypes of rosacea. Therapies directly targeting the Th1/Th17 pathway are promising candidates in the future treatment of this skin disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.