The planar front of a growing a crystal is often destroyed by instabilities. In the case of growth from a condensed phase, the most frequent ones are diffusion instabilities, which will be but briefly discussed in simple terms in chapter II. The present review is mainly devoted to instabilities which arise in ballistic growth, especially Molecular Beam Epitaxy (MBE). The reasons of the instabilities can be geometric (shadowing effect), but they are mostly kinetic or thermodynamic. The kinetic instabilities which will be studied in detail in chapters IV and V result from the fact that adatoms diffusing on a surface do not easily cross steps (Ehrlich-Schwoebel or ES effect). When the growth front is a high symmetry surface, the ES effect produces mounds which often coarsen in time according to power laws. When the growth front is a stepped surface, the ES effect initially produces a meandering of the steps, which eventually may also give rise to mounds. Kinetic instabilities can usually be avoided by raising the temperature, but this favours thermodynamic instabilities. Concerning these ones, the attention will be focussed on the instabilities resulting from slightly different lattice constants of the substrate and the adsorbate. They can take the following forms. i) Formation of misfit dislocations (chapter VIII). ii) Formation of isolated epitaxial clusters which, at least in their earliest form, are `coherent' with the substrate, i.e. dislocation-free (chapter X). iii) Wavy deformation of the surface, which is presumably the incipient stage of (ii) (chapter IX). The theories and the experiments are critically reviewed and their comparison is qualitatively satisfactory although some important questions have not yet received a complete answer.Comment: 90 pages in revtex, 45 figures mainly in gif format. Review paper to be published in Physics Reports. Postscript versions for all the figures can be found at http://www.theo-phys.uni-essen.de/tp/u/politi
Using the strained-induced 2D–3D transition, InAs dots have been grown on InP(001) and examined by transmission electron microscopy. Two different modes of island size and spatial distribution have been identified. For deposit of 1.5 and 1.8 monolayers, the islands are about 7 nm high and randomly distributed. Above 2 monolayers, they are about five times smaller in volume and locally self-organized, with a typical distance of 40 nm independent of the island density. It is suggested that the strong dependence of the island size on the total amount of deposited InAs is mainly due to long range interactions through the substrate.
Fe-Au core-shell nanoparticles displaying an original polyhedral morphology have been successfully synthesized through a physical route. Analyses using transmission electron microscopy show that the Au shell forms truncated pyramids epitaxially grown on the (100) facets of the iron cubic core. The evolution of the elastic energy and strain field in the nanoparticles as a function of their geometry and composition is calculated using the finite-element method. The stability of the remarkable centered core-shell morphology experimentally observed is attributed to the weak elastic energy resulting from the low misfit at the Fe/Au (100) interface compared to the surface energy contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.