We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0 g km −1 (using renewables) and 155 g km −1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 35-77 g CO 2 eq km −1. We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800 D year −1. TCO of future wheel motor PHEV may become competitive when batteries cost 400 D kWh −1 , even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150 D kWh −1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 400-1400 D tonne −1 CO 2 eq and may come down to −100 to 300 D tonne −1. Abatement cost using battery powered cars are currently above 1900 D tonne −1 and are not projected to drop below 300-800 D tonne −1 .
The electricity sector in OECD countries is on the brink of a large shift towards low-carbon electricity generation. Power systems after 2030 may consist largely of two low-carbon generator types: Intermittent Renewable Energy Sources (IRES) such as wind and solar PV and thermal generators such as power plants with carbon capture. Combining these two types could lead to conflicts, because IRES require more flexibility from the power system, whereas thermal generators may be relatively inflexible. In this study, we quantify the impacts of large-scale IRES on the power system and its thermal generators, and we discuss how to accurately model IRES impacts on a low-carbon power system. Wind integration studies show that the impacts of wind power on present-day power systems are sizable at penetration rates of around 20% of annual power generation: the combined reserve size increases by 8.6% (6.3-10.8%) of installed wind capacity, and wind power provides 16% (5-27%) of its capacity as firm capacity. Thermal generators are affected by a reduction in their efficiency of 4% (0-9%), and displacement of (mainly natural gas-fired) generators with the highest marginal costs. Of these impacts, only the increase in reserves incurs direct costs of 1-6€/MWh wind. These results are also indicative of the impacts of solar PV and wave power. A comprehensive power system model will be required to model the impacts of IRES in a low-carbon power system, which accounts for: a time step of o 1 h, detailed IRES production patterns, flexibility constraints of thermal generators and interconnection capacity. Ideally, an efficient reserve sizing methodology and novel flexibility technologies (i.e., high capacity interconnectors and electricity storage and DSM) will also be included.
h i g h l i g h t s Simulated the 2050 West-European power system with 40%, 60% and 80% RES penetration. Assessed if 5 options can complement intermittent RES and lower total system costs. 3 options lower costs: demand response, gas-fired generators(+CCS) and curtailment. Power storage is too expensive and extra interconnectors are valuable at RES P60%. Virtually all generators encounter a revenue gap in the current energyonly market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.