Summary Origins of ancient rockslides in seismic regions can be controversial and must not necessarily be seismic. Certain slope morphologies hint at a possible co-seismic development, though further analyses are required to better comprehend their failure history, such as modelling the slope in its pre-failure state and failure development in static and dynamic conditions. To this effect, a geophysical characterisation of the landslide body is crucial to estimate the possible failure history of the slope. The Balta rockslide analysed in this paper is located in the seismic region of Vrancea-Buzau, Romanian Carpathian Mountains, and presents a deep detachment scarp as well as a massive body of landslide deposits. We applied several geophysical techniques on the landslide body, as well as on the mountain crest above the detachment scarp, in order to characterise the fractured rock material as well as the dimension of failure. Electrical resistivity measurements revealed a possible trend of increasing fragmentation of rockslide material towards the valley bottom, accompanied by increasing soil moisture. Several seismic refraction surveys were performed on the deposits and analysed in form of P-wave refraction tomographies as well as surface waves, allowing to quantify elastic parameters of rock. In addition, a seismic array was installed close to the detachment scarp to analyse the surface wave dispersion properties from seismic ambient noise; the latter was analysed together with a co-located active surface wave analysis survey. Single-station ambient noise measurements completed all over the slope and deposits were used to further reveal impedance contrasts of the fragmented material over in-situ rock, representing an important parameter to estimate the depth of the shearing horizon at several locations of the study area. The combined methods allowed the detection of a profound contrast of 70-90 m, supposedly associated with the maximum landslide material thickness. The entirety of geophysical results was used as basis to build up a geomodel of the rockslide, allowing to estimate the geometry and volume of the failed mass, i.e., approximately 28.5-33.5 million m3.
The stability of rock slopes is often guided significantly by the structural geology of the rocks composing the slope. In this work, we analysed the influences of structural characteristics, and of their seismic responses, on large and deep-seated rock slope failure development. The study was focused on the Tamins and Fernpass rockslides in the European Alps and on the Balta and Eagle’s Lake rockslides in the southeastern Carpathians. These case studies were compared with catastrophic rock slope failures with ascertained or very likely seismic origin in the Tien Shan Mountains. The main goals was to identify indicators for seismically-induced rock slope failures based on the source zone rock structures and failure scar geometry. We present examples of failures in anti-dip slopes and along-strike rock structures that were potentially (or partially) caused by seismic triggering, and we also considered a series of mixed structural types, which are more difficult to interpret conclusively. Our morpho-structural study was supported by distinct element numerical modelling that showed that seismic shaking typically induces deep-seated deformation in initially “stable” rock slopes. In addition, for failures partially triggered by dynamic shaking, these studies can help identify the contribution of the seismic factor to slope instability. The identification of the partial seismic origin on the basis of the dynamic response of rock structures can be particularly interesting for case histories in less seismically active mountain regions (in comparison with the Andes, Tien Shan, Pamirs), such as in the European Alps and the Carpathian Mountains.
We will present a series of new integrated 3D models of landslide sites that were investigated in distinctive seismotectonic and climatic contexts: (1) along the Hockai Fault Zone in Belgium and (2) in the seismic region of Vrancea, Romania. Both sites are deep-seated failures located in more or less seismically active areas. In such areas, slope stability analyses have to take into account the possible contributions to ground failure. Our investigation methods had to be adapted to capture the deep structure as well as the physico-mechanical characteristics that influence the dynamic behaviour of the landslide body. Field surveys included electrical resistivity tomography profiles, seismic refraction profiles (analysed in terms of both seismic P-wave tomography and surface waves), ambient noise measurements to determine the soil resonance frequencies through H/V analysis, complemented by geological and geomorphic mapping. The H/V method, in particular, is more and more used for landslide investigations or sites marked by topographic relief (in addition to the more classical applications on flat sites). Results of data interpretation were compiled in 3D geological-geophysical models supported by high resolution remote sensing data of the ground surface. Data and results were not only analysed in parallel or successively; to ensure full integration of all inputs-outputs, some data fusion and geostatistical techniques were applied to establish closer links between them. Inside the 3D models, material boundaries were defined in terms of surfaces and volumes. Those were implemented in 2D and 3D numerical dynamic models (presented in a companion paper).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.