The stability of rock slopes is often guided significantly by the structural geology of the rocks composing the slope. In this work, we analysed the influences of structural characteristics, and of their seismic responses, on large and deep-seated rock slope failure development. The study was focused on the Tamins and Fernpass rockslides in the European Alps and on the Balta and Eagle’s Lake rockslides in the southeastern Carpathians. These case studies were compared with catastrophic rock slope failures with ascertained or very likely seismic origin in the Tien Shan Mountains. The main goals was to identify indicators for seismically-induced rock slope failures based on the source zone rock structures and failure scar geometry. We present examples of failures in anti-dip slopes and along-strike rock structures that were potentially (or partially) caused by seismic triggering, and we also considered a series of mixed structural types, which are more difficult to interpret conclusively. Our morpho-structural study was supported by distinct element numerical modelling that showed that seismic shaking typically induces deep-seated deformation in initially “stable” rock slopes. In addition, for failures partially triggered by dynamic shaking, these studies can help identify the contribution of the seismic factor to slope instability. The identification of the partial seismic origin on the basis of the dynamic response of rock structures can be particularly interesting for case histories in less seismically active mountain regions (in comparison with the Andes, Tien Shan, Pamirs), such as in the European Alps and the Carpathian Mountains.
<p>The interaction between glacier retreat and rock slopes has gained considerable attention in the past years due to climate change. Glaciers shape mountain slopes and can daylight zones of weakness as they recede. Glaciers can act as a preparatory factor or trigger for slope failure. A retreating glacier at the slope's toe is often cited as the cause of failure. However, the relationship between glacier retreat and rock-slope stability is much more complicated, particularly for landslides that lack an explicit trigger. We studied a paraglacial slope failure at Grewingk Lake and Glacier in southcentral Alaska, United States. The collapse occurred on October 14, 1967, with no specific trigger, such as heavy rain or seismic activity on the day of the event. Grewingk Glacier is a lake-terminating glacier that has experienced and continues to experience rapid retreat, as have most glaciers around the world. The rapid retreat and the location of the glacier at the time of the collapse could lead to the conclusion that this was the cause of the collapse. However, a thorough examination of the structural geology of the slope and processes that could contribute to reduce the slope stability showed that the retreat of the glacier is only part of the tale. The structural preconditioning, together with an accumulation of seismic activity and daylighting fracture planes progressively contributed to the slope's destabilization. Our study emphasizes the value of examining the temporal trends of paraglacial rock-slope failures in situations in which there was no evident trigger at the time of the collapse.</p>
<p>The stability of rock slopes is often guided by the structural geology of the rocks composing the slope. Geological structures, such as ductile folds, discontinuities as well as brittle faults and fractures, are known factors contributing to a decrease in slope stability according to their orientation in space - with respect to the general orientation of the main slope and its (seismo-) tectonic damage history. Additionally, a rock slope may undergo many forms of gravitationallyinduced, erosional and/or weathering-induced destabilisation.</p><p>Rock slope failures may be classified and described according to several factors, such as their volume, displacement mechanisms and velocity. In this work, especially deep-seated and very large failures (with a volume of >10<sup>7</sup> m<sup>3</sup>) are analyzed with regard to their structural characteristics.</p><p>Giant rockslides originate as planar, rotational, wedge, compound, or irregular slope failures. Most of them convert into flow-like rock avalanches during emplacement. Here, we will not detail the evolution of rock slope failures but rather focus on their origin. The main goal is to identify features allowing to distinguish seismic trigger modes from climatic ones, notably on the basis of the source zone rock structures. We will present examples of classical anti-dip slope (and along-strike) rock structures that hint at a seismic origin, but we will also consider a series of mixed structural types, which are more difficult to interprete. This morpho-structural study is supported by numerical modelling results showing that seismic shaking typically induces deeper seated deformation in initially &#8216;stable&#8217; rockslopes.</p><p>For failures only partially triggered by dynamic shaking, these study results could help to identify the seismic factor in slope evolution. Especially in less seismically active mountain regions, such as the Alps and the Carpathian Mountains, these analyses can be used for paleoseismic studies &#8211; provided that dating the seismic initiation of mass movement is possible. For instance, we will show that the &#8220;Tamins&#8221; and the &#8220;Fernpass&#8221; rockslides in the Alps present structural and morphological features hinting at a partly seismic origin. Furthermore, we present study cases of ancient rockslides in the SE Carpathians (&#8220;Balta&#8221; and &#8220;Eagle&#8217;s Lake&#8221;), where a pure seismic origin is most probable and currently under discussion (supported by numerical analyses).</p>
The stability of rock slopes is often guided by the structural geology of the rocks composing the slope. In this work, we analyse the influence of structural characteristics, and of their seismic response, on large and deep-seated rock slope failure development. The study is focused on the Tamins and Fernpass rockslides in the Alps and on the Balta and Eagles Lake rockslides in the southeastern Carpathians. These case studies are compared with catastrophic rock slope failures with ascertained or very likely seismic origin in the Tien Shan Mountains. The main goal is to identify features allowing to identify seismically induced deformation modes based on the source zone rock structures. We will present examples of classical anti-dip slope and along-strike rock structures that hint at a possible/partial seismic origin, but we will also consider a series of mixed structural types, which are more difficult to be interpreted. This morpho-structural study is supported by distinct element numerical modelling results showing that seismic shaking typically induces deeper seated deformation in initially 'stable' rock slopes. In addition, for failures partially triggered by dynamic shaking, these studies can help identify the contribution of the seismic factor to slope movements. The identification of the partial seismic origin on the basis of the dynamic response of rock structures can be particularly interesting for case histories in less seismically active mountain regions (in comparison with the Andes, Tien Shan, Pamirs), such as in the Alps and the Carpathian Mountains.
Translation No. 12 USE OF SULPHITIC LIQUID TO REDUCE THE RESISTANCE OF QUARTZOSF ROCKS TO DRILLING (A translation) Lemaire, E" Ingenieur des Arts et Nanufactures, Paris. Ltemploi des lesc,4 -cs sJifit)ques pour dlmiruer la r6sistancr, des roches quartzeuses
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.