KRASG12C has emerged as a promising target
in the treatment
of solid tumors. Covalent inhibitors targeting the mutant cysteine-12
residue have been shown to disrupt signaling by this long-“undruggable”
target; however clinically viable inhibitors have yet to be identified.
Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99)
we identified in KRASG12C to identify inhibitors suitable
for clinical development. Structure-based design efforts leading to
the identification of a novel quinazolinone scaffold are described,
along with optimization efforts that overcame a configurational stability
issue arising from restricted rotation about an axially chiral biaryl
bond. Biopharmaceutical optimization of the resulting leads culminated
in the identification of AMG 510, a highly potent, selective, and
well-tolerated KRASG12C inhibitor currently in phase I
clinical trials (NCT03600883).
We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).
Structure-based rational design led to the discovery of novel inhibitors of the MDM2-p53 protein-protein interaction. The affinity of these compounds for MDM2 was improved through conformational control of both the piperidinone ring and the appended N-alkyl substituent. Optimization afforded 29 (AM-8553), a potent and selective MDM2 inhibitor with excellent pharmacokinetic properties and in vivo efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.