KRASG12C has emerged as a promising target
in the treatment
of solid tumors. Covalent inhibitors targeting the mutant cysteine-12
residue have been shown to disrupt signaling by this long-“undruggable”
target; however clinically viable inhibitors have yet to be identified.
Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99)
we identified in KRASG12C to identify inhibitors suitable
for clinical development. Structure-based design efforts leading to
the identification of a novel quinazolinone scaffold are described,
along with optimization efforts that overcame a configurational stability
issue arising from restricted rotation about an axially chiral biaryl
bond. Biopharmaceutical optimization of the resulting leads culminated
in the identification of AMG 510, a highly potent, selective, and
well-tolerated KRASG12C inhibitor currently in phase I
clinical trials (NCT03600883).
We recently reported the discovery of AM-8553 (1), a potent and selective piperidinone inhibitor of the MDM2-p53 interaction. Continued research investigation of the N-alkyl substituent of this series, focused in particular on a previously underutilized interaction in a shallow cleft on the MDM2 surface, led to the discovery of a one-carbon tethered sulfone which gave rise to substantial improvements in biochemical and cellular potency. Further investigation produced AMG 232 (2), which is currently being evaluated in human clinical trials for the treatment of cancer. Compound 2 is an extremely potent MDM2 inhibitor (SPR KD = 0.045 nM, SJSA-1 EdU IC50 = 9.1 nM), with remarkable pharmacokinetic properties and in vivo antitumor activity in the SJSA-1 osteosarcoma xenograft model (ED50 = 9.1 mg/kg).
The prosurvival BCL2 family member MCL1 is frequently dysregulated in cancer. To overcome the signifi cant challenges associated with inhibition of MCL1 protein-protein interactions, we rigorously applied small-molecule conformational restriction, which culminated in the discovery of AMG 176, the fi rst selective MCL1 inhibitor to be studied in humans. We demonstrate that MCL1 inhibition induces a rapid and committed step toward apoptosis in subsets of hematologic cancer cell lines, tumor xenograft models, and primary patient samples. With the use of a human MCL1 knock-in mouse, we demonstrate that MCL1 inhibition at active doses of AMG 176 is tolerated and correlates with clear pharmacodynamic effects, demonstrated by reductions in B cells, monocytes, and neutrophils. Furthermore, the combination of AMG 176 and venetoclax is synergistic in acute myeloid leukemia (AML) tumor models and in primary patient samples at tolerated doses. These results highlight the therapeutic promise of AMG 176 and the potential for combinations with other BH3 mimetics. SIGNIFICANCE: AMG 176 is a potent, selective, and orally bioavailable MCL1 inhibitor that induces a rapid commitment to apoptosis in models of hematologic malignancies. The synergistic combination of AMG 176 and venetoclax demonstrates robust activity in models of AML at tolerated doses, highlighting the promise of BH3-mimetic combinations in hematologic cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.