Computational detection and understanding of empathy is an important factor in advancing human-computer interaction. Yet to date, textbased empathy prediction has the following major limitations: It underestimates the psychological complexity of the phenomenon, adheres to a weak notion of ground truth where empathic states are ascribed by third parties, and lacks a shared corpus. In contrast, this contribution presents the first publicly available gold standard for empathy prediction. It is constructed using a novel annotation methodology which reliably captures empathy assessments by the writer of a statement using multiitem scales. This is also the first computational work distinguishing between multiple forms of empathy, empathic concern, and personal distress, as recognized throughout psychology. Finally, we present experimental results for three different predictive models, of which a CNN performs the best.
ObjectivesThe current study analyzes a large set of Twitter data from 1,384 US counties to determine whether excessive alcohol consumption rates can be predicted by the words being posted from each county.MethodsData from over 138 million county-level tweets were analyzed using predictive modeling, differential language analysis, and mediating language analysis.ResultsTwitter language data captures cross-sectional patterns of excessive alcohol consumption beyond that of sociodemographic factors (e.g. age, gender, race, income, education), and can be used to accurately predict rates of excessive alcohol consumption. Additionally, mediation analysis found that Twitter topics (e.g. ‘ready gettin leave’) can explain much of the variance associated between socioeconomics and excessive alcohol consumption.ConclusionsTwitter data can be used to predict public health concerns such as excessive drinking. Using mediation analysis in conjunction with predictive modeling allows for a high portion of the variance associated with socioeconomic status to be explained.
Technology now makes it possible to understand efficiently and at large scale how people use language to reveal their everyday thoughts, behaviors, and emotions. Written text has been analyzed through both theory-based, closed-vocabulary methods from the social sciences as well as data-driven, open-vocabulary methods from computer science, but these approaches have not been comprehensively compared. To provide guidance on best practices for automatically analyzing written text, this narrative review and quantitative synthesis compares five predominant closed- and open-vocabulary methods: Linguistic Inquiry and Word Count (LIWC), the General Inquirer, DICTION, Latent Dirichlet Allocation, and Differential Language Analysis. We compare the linguistic features associated with gender, age, and personality across the five methods using an existing dataset of Facebook status updates and self-reported survey data from 65,896 users. Results are fairly consistent across methods. The closed-vocabulary approaches efficiently summarize concepts and are helpful for understanding how people think, with LIWC2015 yielding the strongest, most parsimonious results. Open-vocabulary approaches reveal more specific and concrete patterns across a broad range of content domains, better address ambiguous word senses, and are less prone to misinterpretation, suggesting that they are well-suited for capturing the nuances of everyday psychological processes. We detail several errors that can occur in closed-vocabulary analyses, the impact of sample size, number of words per user and number of topics included in open-vocabulary analyses, and implications of different analytical decisions. We conclude with recommendations for researchers, advocating for a complementary approach that combines closed- and open-vocabulary methods.
Counterfactual statements, describing events that did not occur and their consequents, have been studied in areas including problem-solving, affect management, and behavior regulation. People with more counterfactual thinking tend to perceive life events as more personally meaningful. Nevertheless, counterfactuals have not been studied in computational linguistics. We create a counterfactual tweet dataset and explore approaches for detecting counterfactuals using rule-based and supervised statistical approaches. A combined rule-based and statistical approach yielded the best results (F1 = 0.77) outperforming either approach used alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.