We characterized five different vaccine candidates and a commercial vaccine in terms of safety, immunogenicity and using a systems vaccinology approach, with the aim to select novel vaccine candidates against Mycoplasma hyopneumoniae . Seven groups of six M. hyopneumoniae -free piglets were primo- and booster vaccinated with the different experimental bacterin formulations, the commercial vaccine Hyogen® as a positive control or PBS as a negative control. The experimental bacterin was formulated with cationic liposomes + c-di-AMP (Lipo_AMP), cationic liposomes + Toll-like receptor (TLR) 2/1, TLR7, and TLR9 ligands (TLR ligands; Lipo_TLR), micro-particles + TLR ligands (PLGA_TLR), squalene-in-water emulsion + TLR ligands (SWE_TLR), or DDA:TDB liposomes (Lipo_DDA:TDB). Lipo_DDA:TDB and Lipo_AMP were the most potent in terms of serum antibody induction, and Lipo_DDA:TDB, Lipo_AMP, and SWE_TLR significantly induced Th1 cytokine-secreting T-cells. Only PLGA_TLR appeared to induce Th17 cells, but was unable to induce serum antibodies. The transcriptomic analyses demonstrated that the induction of inflammatory and myeloid cell blood transcriptional modules (BTM) in the first 24 h after vaccination correlated well with serum antibodies, while negative correlations with the same modules were found 7 days post-vaccination. Furthermore, many cell cycle and T-cell BTM upregulated at day seven correlated positively with adaptive immune responses. When comparing the delivery of the identical TLR ligands with the three formulations, we found SWE_TLR to be more potent in the induction of an early innate immune response, while the liposomal formulation more strongly promoted late cell cycle and T-cell BTM. For the PLGA formulation we found signs of a delayed and weak perturbation of these BTM. Lipo_AMP was found to be the most potent vaccine at inducing a BTM profile similar to that correlating with adaptive immune response in this and other studies. Taken together, we identified four promising vaccine candidates able to induce M. hyopneumoniae -specific antibody and T-cell responses. In addition, we have adapted a systems vaccinology approach developed for human to pigs and demonstrated its capacity in identifying early immune signatures in the blood relating to adaptive immune responses. This approach represents an important step in a more rational design of efficacious vaccines for pigs.
New vaccine formulations that include novel strains of Mycoplasma hyopneumoniae and innovative adjuvants designed to induce cellular immunity could improve vaccine efficacy against this pathogen. The aim of this experimental study was to assess the efficacy of three experimental bacterin formulations based on M. hyopneumoniae field strain F7.2C which were able to induce cellular immunity. The formulations included a cationic liposome formulation with the Mincle receptor ligand trehalose 6,6-dibehenate (Lipo_DDA:TDB), a squalene-in-water emulsion with Toll-like receptor (TLR) ligands targeting TLR1/2, TLR7/8 and TLR9 (SWE_TLR), and a poly(lactic-co-glycolic acid) micro-particle formulation with the same TLR ligands (PLGA_TLR). Four groups of 12 M. hyopneumoniae-free piglets were primo- (day (D) 0; 39 days of age) and booster vaccinated (D14) intramuscularly with either one of the three experimental bacterin formulations or PBS. The pigs were endotracheally inoculated with a highly and low virulent M. hyopneumoniae strain on D28 and D29, respectively, and euthanized on D56. The main efficacy parameters were: respiratory disease score (RDS; daily), macroscopic lung lesion score (D56) and log copies M. hyopneumoniae DNA determined with qPCR on bronchoalveolar lavage (BAL) fluid (D42, D56). All formulations were able to reduce clinical symptoms, lung lesions and the M. hyopneumoniae DNA load in the lung, with formulation SWE_TLR being the most effective (RDSD28–D56 −61.90%, macroscopic lung lesions −88.38%, M. hyopneumoniae DNA load in BAL fluid (D42) −67.28%). Further experiments raised under field conditions are needed to confirm these results and to assess the effect of the vaccines on performance parameters.
BackgroundThe mycotoxin deoxynivalenol (DON) is highly prevalent in cereals in moderate climates and therefore pigs are often exposed to a DON-contaminated diet. Pigs are highly susceptible to DON and intake of DON-contaminated feed may lead to an altered immune response and may influence the pathogenesis of specific bacterial diseases. Therefore, the maximum guidance level in feed is lowest in this species and has been set at 900 μg/kg feed by the European Commission. This study aimed to determine the effect of in-feed administration of a moderately high DON concentration (1514 μg/kg) on the severity of an experimental Mycoplasma hyopneumoniae (M. hyopneumoniae) infection in weaned piglets. Fifty M. hyopneumoniae-free piglets were assigned at 30 days of age [study day (D)0] to four different groups: 1) negative control group (NCG; n = 5), 2) DON-contaminated group (DON; n = 15), 3) DON-contaminated and M. hyopneumoniae-inoculated group (DONMHYO; n = 15), 4) M. hyopneumoniae-inoculated group (MHYO; n = 15). The piglets were fed the experimental diets ad libitum for five weeks and were monitored during this period and euthanized at day 35 [27 days post infection (DPI)] or 36 (28 DPI). The main parameters under investigation were macroscopic lung lesions (MLL) at euthanasia, respiratory disease score (RDS) from day 8 until day 35, histopathologic lesions and log copies of M. hyopneumoniae DNA detected by qPCR, determined at the day of euthanasia.ResultsNo significant difference was obtained for MLL at euthanasia, RDS (8–35), histopathologic lung lesions and log copies of M. hyopneumoniae DNA in the DONMHYO and MHYO group and consequently, no enhancement of the severity of the M. hyopneumoniae infection could be detected in the DONMHYO compared to the MHYO group.ConclusionsUnder present conditions, the findings imply that feed contaminated with DON (1514 μg/kg) provided to weaned pigs for five weeks did not increase the severity of an experimental M. hyopneumoniae infection. Further research is needed to investigate the impact of DON on M. hyopneumoniae infections in a multi-mycotoxin and multi-pathogen environment.
The composition of mother’s milk is considered the ideal diet for neonates. This study investigated how conserved or variable the amino acid profile of sow colostrum and milk is throughout lactation, compared with other studies in sows and other species. Twenty-five sows (parity one to seven) from one farm with gestation lengths of 114 to 116 d were sampled on d 0, 3, and 10 after parturition. The total amino acid profile of the samples was analyzed through ion-exchange chromatography, and the results were displayed as the percentage of total amino acid and compared with literature data. Most of the amino acid concentrations in sow milk decreased significantly (p < 0.05) throughout the lactation period, while the amino acid profile generally showed a conserved pattern, especially from d 3 to d 10, and was rather similar across different studies. Glutamine + glutamate was the most abundant amino acid in milk at all sampling moments, accounting for 14–17% of total amino acids. The proportions of proline, valine, and glycine in sow milk nearly accounted for 11%, 7%, and 6% respectively, and were higher compared to human, cow, and goat milk, while the methionine proportion was less than the other three. Compared to the large variations often reported in macronutrient concentrations, the amino acid profile of sow milk in the present study, as well as in others, seems well conserved across the lactation period. Similarities with characteristic differences were also observed between sow milk and piglet body composition, which might reflect the nutrition requirements of preweaning piglets. This study warrants further research exploring the link between the whole amino acid profile and the particular amino acids for suckling piglets and could facilitate insight for optimizing creep feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.