An optimal anticancer vaccine probably requires the cooperation of both CD4+ Th cells and CD8+ CTLs. A promising tool in cancer immunotherapy is, therefore, the genetic modification of dendritic cells (DCs) by introducing the coding region of a tumor Ag, of which the antigenic peptides will be presented in both HLA class I and class II molecules. This can be achieved by linking the tumor Ag to the HLA class II-targeting sequence of an endosomal or lysosomal protein. In this study we compared the efficiency of the targeting signals of invariant chain, lysosome-associated membrane protein-1 (LAMP1) and DC-LAMP. Human DCs were electroporated before or after maturation with mRNA encoding unmodified enhanced green fluorescent protein (eGFP) or eGFP linked to various targeting signals. The lysosomal degradation inhibitor chloroquine was added, and eGFP expression was evaluated at different time points after electroporation. DCs were also electroporated with unmodified MAGE-A3 or MAGE-A3 linked to the targeting signals, and the presentation of MAGE-A3-derived epitopes in the context of HLA class I and class II molecules was investigated. Our data suggest that proteins linked to the different targeting signals are targeted to the lysosomes and are indeed presented in the context of HLA class I and class II molecules, but with different efficiencies. Proteins linked to the LAMP1 or DC-LAMP signal are more efficiently presented than proteins linked to the invariant chain-targeting signal. Furthermore, DCs electroporated after maturation are more efficient in Ag presentation than DCs electroporated before maturation.
Roasting trials with a modified coffee roaster revealed that the attained end-temperature is the key parameter for control of nonenzymatic browning during malt production. The development of the main Maillard reaction related malt characteristics (colour, antioxidative activity and flavour) was therefore assessed under mild, intermediate and intensive roasting conditions with end-temperatures of 120, 150 and 180°C, respectively. Since maximal browning occurred between 125 and 160°C, the rate of colour formation during mild roasting significantly differed from the other two conditions (3.5 versus 15 European Brewery Convention (EBC) units /min). High molecular weight (HMW) melanoidins (> 70 kDa) were mainly generated by intensive roasting (between 157 and 166°C). The sudden formation of HMW melanoidins coincided with the abrupt decrease of the level of vicinal diketones and radical scavenging antioxidants, indicating a possible role for these compounds in the polymerisation reactions that lead to the formation of HMW melanoidins.
Until now, studies utilizing mRNA electroporation as a tool for the delivery of tumor antigens to human monocyte-derived dendritic cells (DC) have focused on DC electroporated in an immature state. Immature DC are considered to be specialized in antigen capture and processing, whereas mature DC present antigen and have an increased T-cell stimulatory capacity. Therefore, the consensus has been to electroporate DC before maturation. We show that the transfection efficiency of DC electroporated either before or after maturation was similarly high. Both immature and mature electroporated DC, matured in the presence of an inflammatory cytokine cocktail, expressed mature DC surface markers and preserved their capacity to secrete cytokines and chemokines upon CD40 ligation. In addition, both immature and mature DC can be efficiently cryopreserved before or after electroporation without deleterious effects on viability, phenotype or T-cell stimulatory capacity including in vitro antigen-specific T-cell activation. However, DC electroporated after maturation are more efficient in in vitro migration assays and at least as effective in antigen presentation as DC electroporated before maturation. These results are important for vaccination strategies where an optimal antigen presentation by DC after migration to the lymphoid organs is crucial. Gene Therapy (2005) 12, 772-782.
We characterized five different vaccine candidates and a commercial vaccine in terms of safety, immunogenicity and using a systems vaccinology approach, with the aim to select novel vaccine candidates against Mycoplasma hyopneumoniae . Seven groups of six M. hyopneumoniae -free piglets were primo- and booster vaccinated with the different experimental bacterin formulations, the commercial vaccine Hyogen® as a positive control or PBS as a negative control. The experimental bacterin was formulated with cationic liposomes + c-di-AMP (Lipo_AMP), cationic liposomes + Toll-like receptor (TLR) 2/1, TLR7, and TLR9 ligands (TLR ligands; Lipo_TLR), micro-particles + TLR ligands (PLGA_TLR), squalene-in-water emulsion + TLR ligands (SWE_TLR), or DDA:TDB liposomes (Lipo_DDA:TDB). Lipo_DDA:TDB and Lipo_AMP were the most potent in terms of serum antibody induction, and Lipo_DDA:TDB, Lipo_AMP, and SWE_TLR significantly induced Th1 cytokine-secreting T-cells. Only PLGA_TLR appeared to induce Th17 cells, but was unable to induce serum antibodies. The transcriptomic analyses demonstrated that the induction of inflammatory and myeloid cell blood transcriptional modules (BTM) in the first 24 h after vaccination correlated well with serum antibodies, while negative correlations with the same modules were found 7 days post-vaccination. Furthermore, many cell cycle and T-cell BTM upregulated at day seven correlated positively with adaptive immune responses. When comparing the delivery of the identical TLR ligands with the three formulations, we found SWE_TLR to be more potent in the induction of an early innate immune response, while the liposomal formulation more strongly promoted late cell cycle and T-cell BTM. For the PLGA formulation we found signs of a delayed and weak perturbation of these BTM. Lipo_AMP was found to be the most potent vaccine at inducing a BTM profile similar to that correlating with adaptive immune response in this and other studies. Taken together, we identified four promising vaccine candidates able to induce M. hyopneumoniae -specific antibody and T-cell responses. In addition, we have adapted a systems vaccinology approach developed for human to pigs and demonstrated its capacity in identifying early immune signatures in the blood relating to adaptive immune responses. This approach represents an important step in a more rational design of efficacious vaccines for pigs.
The use of tumor antigen-loaded dendritic cells (DC) is one of the most promising approaches to inducing a tumor-specific immune response. We compared electroporation of mRNA to lentiviral transduction for the delivery of tumor antigens to human monocyte-derived and murine bone marrow-derived DC. Both lentiviral transduction and mRNA electroporation induced eGFP expression in on average 81% of human DC. For murine DC, eGFP mRNA electroporation (62%) proved to be more efficient than lentiviral transduction (47%). When we used tNGFR as a transgene we observed lentiviral pseudotransduction that overestimated lentiviral efficiency. Neither gene transfer method had an adverse effect on viability, phenotype, or allostimulatory capacity of either human or murine DC. Yet, the mRNA-electroporated DC showed a reduced production of IL-12p70 compared to their lentivirally transduced and unmodified counterparts. Human Ii80MAGE-A3-modified DC and murine Ii80tOVA-modified DC were able to present antigenic epitopes in the context of MHC class I and class II. Both types of modified murine DC were able to induce OVA-specific cytotoxic T cells in vivo; however, the mRNA-electroporated DC were less potent. Our data indicate that this may be related to their impaired IL-12 production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.