Preferential and lateral subsurface flow (LSF) may be responsible for the accelerated transport of water and solutes in sloping agricultural landscapes; however, the process is difficult to observe. One idea is to compare time series of soil moisture observations in the field with those in lysimeters, where flow is vertically oriented. This study aims at identifying periods of deviations in soil water contents and pressure heads measured in the field and in a weighing lysimeter with the same soil profile. Wavelet coherency analysis (WCA) was applied to time series of hourly soil water content and pressure head data (15-, 32-, 60-, 80-, and 140-cm depths) from Colluvic Regosol soil profiles. The phase shifts and periodicities indicated by the WCA plots reflected the response times to rain events in the same depth of lysimeter and field soil. For many rain events and depths, pressure and moisture sensors installed in the field soil responded earlier than those in the lysimeter. This could be explained by either vertical preferential flow or LSF from upper hillslope positions. Vice versa, a faster response in the lysimeter soil could be indicative for vertical preferential flow effects. Dry weather conditions and data gaps limited the number of periods with elevated soil moisture in 2016-2018, in which LSF was likely to occur. The WCA plots comprise all temporal patterns of time shifts and correlations between larger data time series in a condensed form to identify potentially relevant periods for more detailed analyses of subsurface flow dynamics.Abbreviations: COI, cone of influence; FDR, frequency domain reflectometry; LSF, lateral subsurface flow; SWC, soil water content; Vol-%, unit of the volumetric soil water content in volume percentage; WCA, wavelet coherency analysis; WTC, wavelet coherency spectrum.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Soil erosion is a major threat to soil fertility, food security and water resources. Besides a quantitative assessment of soil loss, the dynamics of erosion-affected arable soil surfaces still poses challenges regarding field methods and predictions because of scale-dependent and soil management-related complex soil-crop-atmosphere processes. The objective was to test a photogrammetric Structure-from-Motion (SfM) technique for the mm-scale mapping of the soil surface micro-topography that allows the monitoring without special equipment and with widely available cameras. The test was carried out in May 2018 on three plots of 1.5 m2 (upper-, middle-, and footslope) covering surface structural features (tractor wheel lane, seed rows) along a Maize-cultivated hillslope with a coarse-textured topsoil and a runoff monitoring station. The changes in mm-scaled surface micro-topography were derived from repeatedly photographed images of the same surface area during a 2-weeks period with two rain events. A freely available SfM-program (VisualSfM) and the QGIS software were used to generate 3D-models of the surface topography. Soil cores (100 cm3) were sampled to gravimetrically determine the topsoil bulk density. The micro-topographical changes resulting from rainfall–induced soil mass redistribution within the plots were determined from the differences in SfM maps before and after rain. The largest decrease in mean soil surface elevation and roughness was observed after rain for the middle slope plot and primarily in initially less compacted regions. The spatially-distributed intra-plot changes in soil mass at the mm-scale derived from the digital micro-topography models indicated that local depressions were filled with sediments from surrounding knolls during rainfall. The estimated mass loss determined with the SfM technique decreased, if core sample-based soil settlement was considered. The effect of changes in the soil bulk density could be described after calibration also with an empirical model suggested in the Root-Zone-Water-Quality-Model. Uncertainties in the presented plot-scale SfM-technique were due to geo-referencing and the numerical limitations in the freely available SfM-software. The photogrammetric technique provided valuable information on soil surface structure parameters such as surface roughness. The successful application of SfM with widely available cameras and freely available software might stimulate the monitoring of erosion in regions with limited accessibility.
Lateral subsurface flow (LSF) is a phenomenon that is widely occurring including the hummocky ground moraine landscape. Due to the heterogeneous structure of the subsurface, transport times of pesticides and nutrients from agricultural areas to adjacent water bodies are difficult to assess. Here, LSF at Luvisol and Regosol plots of an experimental field were studied by applying potassium bromide along a 10 m trench below the plow pan in October 2019. The soil solution was collected in suction cups 3 m downslope of the trench and in April 2021, the soil was sampled down to 1 m depth. Almost no bromide was found in the soil solution except for the 160 cm depth of the Regosol plot after a 541 day period. After the same time, bromide was observed in the 90 cm soil depth directly underneath the application trench of the Luvisol plot. A 3D reconstruction of the subsurface horizon boundaries of the Regosol revealed subsurface heterogeneities such as sand lenses that might have been attributed to the heterogeneous subsurface flow pattern.
Lateral subsurface flow (LSF) is a phenomenon frequently occurring in the field induced by local water saturation along horizon boundaries under nonequilibrium conditions. However, observations of LSF in undisturbed soils under controlled irrigation in the laboratory are limited but needed for model improvement, prediction, and quantification of LSF. We present a method for extracting an undisturbed soil monolith along a soil horizon boundary and introduce an experimental setup for the measurement of LSF and an irrigation device for simulating rainfall. An experimental test run was simulated using HYDRUS 2D. Water infiltrating into the monolith and flowing either laterally along the horizon boundary or vertically through the bottom horizon could be separately captured by suction discs at the side and the bottom. Thus, a clear distinction between lateral and vertical flow was possible. Pressure heads and water contents were recorded by tensiometers and frequency domain reflectometry (FDR) sensors distributed across the monolith in a regular two‐dimensional, vertical, cross‐sectional pattern. Sensor readings indicated the presence of nonequilibrium conditions within the monolith. Modeling results could reproduce the lateral and vertical outflow of the monolith under constant irrigation, thus showing that water flow within the monolith under steady‐state conditions can be explained by the Richards equation and the van Genuchten–Mualem model. The presented method can be used to improve and verify models designed for the prediction of the onset of LSF including that induced by local nonequilibrium conditions.
<p>Preferential and lateral subsurface flow may be responsible for the accelerated transport of water and solutes in sloping agricultural landscapes; however, the process is difficult to observe. One idea is to compare time series of soil moisture observations in the field with those in lysimeters, where flow is vertically oriented. This study aims at identifying periods of deviations in soil water contents and pressure heads measured in the field and in a weighing lysimeter with the same soil profile. Wavelet Coherency Analysis (WCA) was applied to time series of hourly soil water content and pressure head data (15, 32, 60, 80, and 140 cm depths) from Colluvic Regosol soil profiles in summer 2017. The phase shifts and periodicities indicated by the WCA plots reflected the response times to rain events in the same depth of lysimeter and field soil. For many rain events and depths, sensors installed in the field soil showed a faster response than those in the lysimeters soil. This could be explained by either vertical preferential flow or lateral subsurface flow from upper hillslope positions. Vice versa, a faster sensor response in the lysimeter soil could be indicative for vertical preferential effects. The WCA plots comprise all temporal patterns of time shifts and correlations between larger data time series in a condensed form to identify potentially relevant periods for more detailed analyses of subsurface flow dynamics.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.