Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1, genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain alleles that can be deployed in disease resistance breeding of tomato.
Phytophthora infestans, the causal agent of late blight, is a major threat to commercial potato production worldwide. Significant costs are required for crop protection to secure yield. Many dominant genes for resistance (R-genes) to potato late blight have been identified, and some of these R-genes have been applied in potato breeding. However, the P. infestans population rapidly accumulates new virulent strains that render R-genes ineffective. Here we introduce a new class of resistance which is based on the loss-of-function of a susceptibility gene (S-gene) encoding a product exploited by pathogens during infection and colonization. Impaired S-genes primarily result in recessive resistance traits in contrast to recognition-based resistance that is governed by dominant R-genes. In Arabidopsis thaliana, many S-genes have been detected in screens of mutant populations. In the present study, we selected 11 A. thalianaS-genes and silenced orthologous genes in the potato cultivar Desiree, which is highly susceptible to late blight. The silencing of five genes resulted in complete resistance to the P. infestans isolate Pic99189, and the silencing of a sixth S-gene resulted in reduced susceptibility. The application of S-genes to potato breeding for resistance to late blight is further discussed.Electronic supplementary materialThe online version of this article (doi:10.1007/s11248-016-9964-2) contains supplementary material, which is available to authorized users.
Matrix-associated regions may be useful for studying the role of chromatin architecture in transgene activity of transformed plants. The chicken lysoryme A element was shown to have specific affinity for tobacco nuclear matrices, and its influence on the variability of transgene expression in tobacco plants was studied. T-DNA constructs in which this element flanked either the P-glucuronidase (GUS) reporter gene or both reporter and selection gene were introduced in tobacco. The variation in GUS gene activity was reduced significantly among mature first-generation transgenic plants carrying the A element. Average GUS activity became somewhat higher, but the maximum attainable level of gene expression was similar for all three constructs. Transient gene expression assays showed that the A element did not contain general enhancer functions; therefore, its presence seemed to prevent the lower levels of transgene expression. The strongest reduction in variability was found in plants transformed with the construct carrying the A elements at the borders of the T-DNA. In this population, expression levels became copy number dependent. The presence of two A elements in the T-DNA did not interfere with meiosis.
Matrix-associated regions may be useful for studying the role of chromatin architecture in transgene activity of transformed plants. The chicken lysoryme A element was shown to have specific affinity for tobacco nuclear matrices, and its influence on the variability of transgene expression in tobacco plants was studied. T-DNA constructs in which this element flanked either the P-glucuronidase (GUS) reporter gene or both reporter and selection gene were introduced in tobacco. The variation in GUS gene activity was reduced significantly among mature first-generation transgenic plants carrying the A element. Average GUS activity became somewhat higher, but the maximum attainable level of gene expression was similar for all three constructs. Transient gene expression assays showed that the A element did not contain general enhancer functions; therefore, its presence seemed to prevent the lower levels of transgene expression. The strongest reduction in variability was found in plants transformed with the construct carrying the A elements at the borders of the T-DNA. In this population, expression levels became copy number dependent. The presence of two A elements in the T-DNA did not interfere with meiosis.
Multiple susceptibility genes (S), identified in Arabidopsis, have been shown to be functionally conserved in crop plants. Mutations in these S genes result in resistance to different pathogens, opening a new way to achieve plant disease resistance. The aim of this study was to investigate the role of Defense No Death1 (DND1) in susceptibility of tomato and potato to late blight (Phytophthora infestans). In Arabidopsis, the dnd1 mutant has broad-spectrum resistance against several fungal, bacterial, and viral pathogens. However this mutation is also associated with a dwarfed phenotype. Using an RNAi approach, we silenced AtDND1 orthologs in potato and tomato. Our results showed that silencing of the DND1 ortholog in both crops resulted in resistance to the pathogenic oomycete P. infestans and to two powdery mildew species, Oidium neolycopersici and Golovinomyces orontii. The resistance to P. infestans in potato was effective to four different isolates although the level of resistance (complete or partial) was dependent on the aggressiveness of the isolate. In tomato, DND1-silenced plants showed a severe dwarf phenotype and autonecrosis, whereas DND1-silenced potato plants were not dwarfed and showed a less pronounced autonecrosis. Our results indicate that S gene function of DND1 is conserved in tomato and potato. We discuss the possibilities of using RNAi silencing or loss-of-function mutations of DND1 orthologs, as well as additional S gene orthologs from Arabidopsis, to breed for resistance to pathogens in crop plants.Electronic supplementary materialThe online version of this article (doi:10.1007/s11248-015-9921-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.