The most frequently used method for evaluating tremor in Parkinson’s disease (PD) is currently the internationally standardized Movement Disorder Society—Unified PD Rating Scale (MDS-UPDRS). However, the MDS-UPDRS is associated with limitations, such as its inherent subjectivity and reliance on experienced raters. Objective motor measurements using accelerometry may overcome the shortcomings of visually scored scales. Therefore, the current study focuses on translating the MDS-UPDRS tremor tests into an objective scoring method using 3D accelerometry. An algorithm to measure and classify tremor according to MDS-UPDRS criteria is proposed. For this study, 28 PD patients undergoing neurosurgical treatment and 26 healthy control subjects were included. Both groups underwent MDS-UPDRS tests to rate tremor severity, while accelerometric measurements were performed at the index fingers. All measurements were performed in an off-medication state. Quantitative measures were calculated from the 3D acceleration data, such as tremor amplitude and area-under-the-curve of power in the 4–6 Hz range. Agreement between MDS-UPDRS tremor scores and objective accelerometric scores was investigated. The trends were consistent with the logarithmic relationship between tremor amplitude and MDS-UPDRS score reported in previous studies. The accelerometric scores showed a substantial concordance (>69.6%) with the MDS-UPDRS ratings. However, accelerometric kinetic tremor measures poorly associated with the given MDS-UPDRS scores (R2 < 0.3), mainly due to the noise between 4 and 6 Hz found in the healthy controls. This study shows that MDS-UDPRS tremor tests can be translated to objective accelerometric measurements. However, discrepancies were found between accelerometric kinetic tremor measures and MDS-UDPRS ratings. This technology has the potential to reduce rater dependency of MDS-UPDRS measurements and allow more objective intraoperative monitoring of tremor.
The disease status, progression, and treatment effect of essential tremor (ET) patients are currently assessed with clinical scores, such as the Fahn–Tolosa–Marin Clinical Rating Scale for Tremor (FTM). The use of objective and rater-independent monitoring of tremors may improve clinical care for patients with ET. Therefore, the focus of this study is to develop an objective accelerometry-based method to quantify ET, based on FTM criteria. Thirteen patients with ET and thirteen matched healthy participants underwent FTM tests to rate tremor severity, paired with tri-axial accelerometric measurements at the index fingers. Analogue FTM assessments were performed by four independent raters based on video recordings. Quantitative measures were derived from the accelerometric data, e.g., the area under the curve of power in the 4–8 Hz frequency band (AUCP) and maximal tremor amplitude. As such, accelerometric tremor scores were computed, using thresholds based on healthy measurements and FTM criteria. Agreement between accelerometric and clinical FTM scores was analyzed with Cohen’s kappa coefficient. It was assessed whether there was a relationship between mean FTM scores and the natural logarithm (ln) of the accelerometric outcome measures using linear regression. The agreement between accelerometric and FTM scores was substantial for resting and intention tremor tests (≥72.7%). However, the agreement between accelerometric postural tremor data and clinical FTM ratings (κ = 0.459) was low, although their logarithmic (ln) relationship was substantial (R2 ≥ 0.724). Accelerometric test–retest reliability was good to excellent (ICC ≥ 0.753). This pilot study shows that tremors can be quantified with accelerometry, using healthy thresholds and FTM criteria. The test–retest reliability of the accelerometric tremor scoring algorithm indicates that our low-cost accelerometry-based approach is a promising one. The proposed easy-to-use technology could diminish the rater dependency of FTM scores and enable physicians to monitor ET patients more objectively in clinical, intraoperative, and home settings.
The Movement Disorder Society Unified Parkinson’s Disease Rating Scale—part III (MDS-UPDRS-III) is designed to be applied in the sitting position. However, to evaluate the clinical effect during stereotactic neurosurgery or to assess bedridden patients with Parkinson’s disease (PD), the MDS-UPDRS-III is often used in a supine position. This explorative study evaluates the agreement of the MDS-UPDRS-III in the sitting and the supine positions. In 23 PD patients, the MDS-UPDRS-III was applied in both positions while accelerometric measurements were performed. Video recordings of the assessments were evaluated by two certified raters. Agreement between the sitting and supine MDS-UPDRS-III was studied using Cohen’s kappa coefficient. Relationships between the MDS-UPDRS-III tremor scores and accelerometric amplitudes were calculated for both positions with linear regression. A fair to substantial agreement was found for MDS-UPDRS-III scores of individual items in the sitting and supine positions, while combining all tests resulted in a substantial agreement. The inter-rater reliability was fair to moderate for both positions. A logarithmic relationship between tremor scores and accelerometric amplitude was revealed for both the sitting and supine positions. Nevertheless, these data are insufficient to fully support the supine application of the MDS-UPDRS-III. Several recommendations are made to address the sensitivity of the scale to inter-rater variability. In conclusion, although an overall substantial agreement between sitting and supine MDS-UPDRS-III is confirmed, its application in the supine position is not endorsed for the whole range of its individual items. Caution is warranted in interpreting the supine MDS-UPDRS-III, pending additional research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.