Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated.
In this study, ZI DBS was superior to VIM DBS in terms of patient-reported effectiveness. There was a comparable number of complications between both targets. This finding further supports ZI over VIM as the principal DBS target in essential tremor.
Introduction
Clinical response to deep brain stimulation (DBS) strongly depends on the appropriate placement of the electrode in the targeted structure. Postoperative MRI is recognized as the gold standard to verify the DBS‐electrode position in relation to the intended anatomical target. However, intraoperative computed tomography (iCT) might be a feasible alternative to MRI.
Materials and Methods
In this prospective noninferiority study, we compared iCT with postoperative MRI (24‐72 hours after surgery) in 29 consecutive patients undergoing placement of 58 DBS electrodes. The primary outcome was defined as the difference in Euclidean distance between lead tip coordinates as determined on both imaging modalities, using the lead tip depicted on MRI as reference. Secondary outcomes were difference in radial error and depth, as well as difference in accuracy relative to target.
Results
The mean difference between the lead tips was 0.98 ± 0.49 mm (0.97 ± 0.47 mm for the left‐sided electrodes and 1.00 ± 0.53 mm for the right‐sided electrodes). The upper confidence interval (95% CI, 0.851 to 1.112) did not exceed the noninferiority margin established. The average radial error between lead tips was 0.74 ± 0.48 mm and the average depth error was determined to be 0.53 ± 0.40 mm. The linear Deming regression indicated a good agreement between both imaging modalities regarding accuracy relative to target.
Conclusions
Intraoperative CT is noninferior to MRI for the verification of the DBS‐electrode position. CT and MRI have their specific benefits, but both should be considered equally suitable for assessing accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.