In a fetal-type posterior circle of Willis (FTP) there is an embryonic derivation of the posterior cerebral artery (PCA) from the internal carotid artery (ICA). Besides the fact that a larger area is thus dependent on the ICA, leptomeningeal vessels cannot develop between the anterior and posterior circulation. The tentorium namely prevents cerebellar vessels from connecting to the PCA territory. Therefore patients with an FTP could be more prone to develop vascular insufficiency. An overview of the literature is given. We propose to define a partial FTP, in which a small P1 segment between the basilar artery and the postcommunicating part of the PCA is present, and a full FTP, in which the P1 segment is absent. Whether a full FTP is a risk factor for stroke should be subject of further investigation.
Objective Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in highgrade gliomas. Methods Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Results Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSCperfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Conclusion Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in highgrade gliomas.
The initiation of hemodialysis is associated with an accelerated decline of cognitive function and an increased incidence of cerebrovascular accidents and white matter lesions. Investigators have hypothesized that the repetitive circulatory stress of hemodialysis induces ischemic cerebral injury, but the mechanism is unclear. We studied the acute effect of conventional hemodialysis on cerebral blood flow (CBF), measured by [O]HO positron emission tomography-computed tomography (PET-CT). During a single hemodialysis session, three [O]HO PET-CT scans were performed: before, early after the start of, and at the end of hemodialysis. We used linear mixed models to study global and regional CBF change during hemodialysis. Twelve patients aged ≥65 years (five women, seven men), with a median dialysis vintage of 46 months, completed the study. Mean (±SD) arterial BP declined from 101±11 mm Hg before hemodialysis to 93±17 mm Hg at the end of hemodialysis. From before the start to the end of hemodialysis, global CBF declined significantly by 10%±15%, from a mean of 34.5 to 30.5 ml/100g per minute (difference, -4.1 ml/100 g per minute; 95% confidence interval, -7.3 to -0.9 ml/100 g per minute; =0.03). CBF decline (20%) was symptomatic in one patient. Regional CBF declined in all volumes of interest, including the frontal, parietal, temporal, and occipital lobes; cerebellum; and thalamus. Higher tympanic temperature, ultrafiltration volume, ultrafiltration rate, and pH significantly associated with lower CBF. Thus, conventional hemodialysis induces a significant reduction in global and regional CBF in elderly patients. Repetitive intradialytic decreases in CBF may be one mechanism by which hemodialysis induces cerebral ischemic injury.
BackgroundHigh-grade gliomas are the most common primary brain tumours. Pseudoprogression describes the false appearance of radiation-induced progression on MRI. A distinction should be made from true tumour progression to correctly plan treatment. However, there is wide variation of reported pseudoprogression. We thus aimed to establish the incidence of pseudoprogression and tumour progression in high-grade glioma patients with a systematic review and meta-analysis.MethodsWe searched PubMed, Embase and Web of Science on the incidence of pseudoprogression and tumour progression in adult high-grade glioma patients from 2005, the latest on 8 October 2014. Histology or imaging follow-up was used as reference standard. Extracted data included number of patients with worsening of imaging findings on T1 postcontrast or T2/FLAIR, pseudoprogression and tumour progression. Study quality was assessed. Heterogeneity was tested with I 2. Pooling of the results was done with random models using Metaprop in STATA (StataCorp. Stata Statistical Software. College Station, TX: StataCorp LP).ResultsWe identified 73 studies. MRI progression occurred in 2603 patients. Of these, 36% (95% confidence interval [CI] 33–40%) demonstrated pseudoprogression, 60% (95%CI 56–64%) tumour progression and unknown outcome was present in the remaining 4% of the patients (range 1–37%).ConclusionThis meta-analysis demonstrated for the first time a notably high pooled incidence of pseudoprogression in patients with a form of progression across the available literature. This highlighted the full extent of the problem of the currently conventional MRI-based Response Assessment in Neuro-Oncology (RANO) criteria for treatment evaluation in high-grade gliomas. This underscores the need for more accurate treatment evaluation using advanced imaging to improve diagnostic accuracy and therapeutic approach.Electronic supplementary materialThe online version of this article (doi: 10.1007/s00062-017-0584-x) contains supplementary material, which is available to authorized users. It contains the characteristics of the included studies (supplementary table 1) and a full search strategy (see supplementary search strategy).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.