Objective Treatment response assessment in high-grade gliomas uses contrast enhanced T1-weighted MRI, but is unreliable. Novel advanced MRI techniques have been studied, but the accuracy is not well known. Therefore, we performed a systematic meta-analysis to assess the diagnostic accuracy of anatomical and advanced MRI for treatment response in highgrade gliomas. Methods Databases were searched systematically. Study selection and data extraction were done by two authors independently. Meta-analysis was performed using a bivariate random effects model when ≥5 studies were included. Results Anatomical MRI (five studies, 166 patients) showed a pooled sensitivity and specificity of 68% (95%CI 51-81) and 77% (45-93), respectively. Pooled apparent diffusion coefficients (seven studies, 204 patients) demonstrated a sensitivity of 71% (60-80) and specificity of 87% (77-93). DSCperfusion (18 studies, 708 patients) sensitivity was 87% (82-91) with a specificity of 86% (77-91). DCE-perfusion (five studies, 207 patients) sensitivity was 92% (73-98) and specificity was 85% (76-92). The sensitivity of spectroscopy (nine studies, 203 patients) was 91% (79-97) and specificity was 95% (65-99). Conclusion Advanced techniques showed higher diagnostic accuracy than anatomical MRI, the highest for spectroscopy, supporting the use in treatment response assessment in highgrade gliomas.
Treatment evaluation of patients with glioblastomas is important to aid in clinical decisions. Conventional MRI with contrast is currently the standard method, but unable to differentiate tumor progression from treatment‐related effects. Pseudoprogression appears as new enhancement, and thus mimics tumor progression on conventional MRI. Contrarily, a decrease in enhancement or edema on conventional MRI during antiangiogenic treatment can be due to pseudoresponse and is not necessarily reflective of a favorable outcome. Neovascularization is a hallmark of tumor progression but not for posttherapeutic effects. Perfusion‐weighted MRI provides a plethora of additional parameters that can help to identify this neovascularization. This review shows that perfusion MRI aids to identify tumor progression, pseudoprogression, and pseudoresponse. The review provides an overview of the most applicable perfusion MRI methods and their limitations. Finally, future developments and remaining challenges of perfusion MRI in treatment evaluation in neuro‐oncology are discussed. Level of Evidence: 3 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;49:11–22.
Posttreatment high-grade gliomas are usually monitored with contrast-enhanced MRI, but its diagnostic accuracy is limited as it cannot adequately distinguish between true tumor progression and treatment-related changes. According to recent Response Assessment in Neuro-Oncology recommendations, PET overcomes this limitation. However, it is currently unknown which tracer yields the best results. Therefore, a systematic review and metaanalysis were performed to compare the diagnostic accuracy of the different PET tracers in differentiating tumor progression from treatment-related changes in high-grade glioma patients. Methods: PubMed, Web of Science, and Embase were searched systematically. Study selection, data extraction, and quality assessment were performed independently by 2 authors. Metaanalysis was performed using a bivariate random-effects model when at least 5 studies were included. Results: The systematic review included 39 studies (11 tracers). 18 F-FDG (12 studies, 171 lesions) showed a pooled sensitivity and specificity of 84% (95% confidence interval, 72%-92%) and 84% (95% confidence interval, 69%-93%), respectively. O-(2-18 F-fluoroethyl)-L-tyrosine (18 F-FET) (7 studies, 172 lesions) demonstrated a sensitivity of 90% (95% confidence interval, 81%-95%) and specificity of 85% (95% confidence interval, 71%-93%). For S-11 C-methyl)-L-methionine (11 C-MET) (8 studies, 151 lesions), sensitivity was 93% (95% confidence interval, 80%-98%) and specificity was 82% (95% confidence interval, 68%-91%). The numbers of included studies for the other tracers were too low to combine, but sensitivity and specificity ranged between 93%-100% and 0%-100%, respectively, for 18 F-FLT; 85%-100% and 72%-100%, respectively, for 3,4-dihydroxy-6-18 F-fluoro-L-phenylalanine (18 F-FDOPA); and 100% and 70%-88%, respectively, for 11 C-choline. Conclusion: 18 F-FET and 11 C-MET, both amino-acid tracers, showed a comparably higher sensitivity than 18 F-FDG in the differentiation between tumor progression and treatment-related changes in high-grade glioma patients. The evidence for other tracers is limited; thus, 18 F-FET and 11 C-MET are preferred when available. Our results support the incorporation of amino-acid PET tracers for the treatment evaluation of high-grade gliomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.