The aim of this study was to discriminate malignant and benign clinical T1 renal masses on routinely acquired computed tomography (CT) images using radiomics and machine learning techniques.Adult patients undergoing surgical resection and histopathological analysis of clinical T1 renal masses were included. Preoperative CT studies in venous phase from multiple referring centers were included, without restriction to specific CT scanners, slice thickness, or degrees of artifacts. Renal masses were segmented and 120 standardized radiomic features extracted. Machine learning algorithms were used to predict malignancy of renal masses using radiomics features and cross-validation. Diagnostic accuracy of machine learning models and assessment by independent blinded radiologists were compared based on the gold standard of histopathologic diagnosis.A total of 94 patients met inclusion criteria (benign renal masses: n = 18; malignant: n = 76). CT studies from 18 different scanners were assessed with median slice thickness of 2.5 mm and artifacts in 15 cases (15.9%).Area under the receiver-operating-characteristics curve (AUC) of random forest (random forest [RF], AUC = 0.83) was significantly higher compared to the radiologists (AUC = 0.68, P = .047). Sensitivity was significantly higher for RF versus radiologists (0.88 vs 0.80, P = .045), whereas specificity was numerically higher for RF (0.67 vs 0.50, P = .083).Although limited by an overall small sample size and few benign renal tumors, a radiomic features and machine learning approach suggests a high diagnostic accuracy for discrimination of malignant and benign clinical T1 renal masses on venous phase CT. The presented algorithm robustly outperforms human readers in a real-life scenario with nonstandardized imaging studies from various referring centers. Abbreviations: AML = angiomyolipoma, AUC = area under the ROC curve, CD = cluster of differentiation, CK = cytokeratin, CT = computed tomography, HE = hematoxylin-eosin, HMB = human melanoma black, ICC = interobserver correlation coefficient, IQR = interquartile range, KNN = k-nearest neighbor, NN = neural network, POM = probability of malignancy, RCC = renal cell carcinoma, RF = random forest, RFE = recursive feature elimination, ROC = receiver operating characteristics, ROI = region of interest, SVM = c, US = United States, XG boost = extreme gradient boosting.