Respiratory muscle ultrasound is used to evaluate the anatomy and function of the respiratory muscle pump. It is a safe, repeatable, accurate, and non-invasive bedside technique that can be successfully applied in different settings, including general intensive care and the emergency department. Mastery of this technique allows the intensivist to rapidly diagnose and assess respiratory muscle dysfunction in critically ill patients and in patients with unexplained dyspnea. Furthermore, it can be used to assess patient-ventilator interaction and weaning failure in critically ill patients. This paper provides an overview of the basic and advanced principles underlying respiratory muscle ultrasound with an emphasis on the diaphragm. We review different ultrasound techniques useful for monitoring of the respiratory muscle pump and possible therapeutic consequences. Ideally, respiratory muscle ultrasound is used in conjunction with other components of critical care ultrasound to obtain a comprehensive evaluation of the critically ill patient. We propose the ABCDE-ultrasound approach, a systematic ultrasound evaluation of the heart, lungs and respiratory muscle pump, in patients with weaning failure.
Mechanical ventilation may have adverse effects on both the lung and the diaphragm. Injury to the lung is mediated by excessive mechanical stress and strain, whereas the diaphragm develops atrophy as a consequence of low respiratory effort and injury in case of excessive effort. The lung and diaphragm-protective mechanical ventilation approach aims to protect both organs simultaneously whenever possible. This review summarizes practical strategies for achieving lung and diaphragm-protective targets at the bedside, focusing on inspiratory and expiratory ventilator settings, monitoring of inspiratory effort or respiratory drive, management of dyssynchrony, and sedation considerations. A number of potential future adjunctive strategies including extracorporeal CO 2 removal, partial neuromuscular blockade, and neuromuscular stimulation are also discussed. While clinical trials to confirm the benefit of these approaches are awaited, clinicians should become familiar with assessing and managing patients’ respiratory effort, based on existing physiological principles. To protect the lung and the diaphragm, ventilation and sedation might be applied to avoid excessively weak or very strong respiratory efforts and patient-ventilator dysynchrony.
Introduction This narrative review summarizes current knowledge on the physiology and pathophysiology of expiratory muscle function in ICU patients, as shared by academic professionals from multidisciplinary, multinational backgrounds, who include clinicians, clinical physiologists and basic physiologists. Results The expiratory muscles, which include the abdominal wall muscles and some of the rib cage muscles, are an important component of the respiratory muscle pump and are recruited in the presence of high respiratory load or low inspiratory muscle capacity. Recruitment of the expiratory muscles may have beneficial effects, including reduction in end-expiratory lung volume, reduction in transpulmonary pressure and increased inspiratory muscle capacity. However, severe weakness of the expiratory muscles may develop in ICU patients and is associated with worse outcomes, including difficult ventilator weaning and impaired airway clearance. Several techniques are available to assess expiratory muscle function in the critically ill patient, including gastric pressure and ultrasound. Conclusion The expiratory muscles are the "neglected component" of the respiratory muscle pump. Expiratory muscles are frequently recruited in critically ill ventilated patients, but a fundamental understanding of expiratory muscle function is still lacking in these patients.
Recent studies have shown both beneficial and detrimental effects of patient breathing effort in mechanical ventilation. Quantification of breathing effort may allow the clinician to titrate ventilator support to physiological levels of respiratory muscle activity. In this review we will describe the physiological background and methodological issues of the most frequently used methods to quantify breathing effort, including esophageal pressure measurement, the work of breathing, the pressure-time-product, electromyography and ultrasound. We will also discuss the level of breathing effort that may be considered optimal during mechanical ventilation at different stages of critical illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.