Background Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak.Methods PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342).
FindingsBetween March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6•3 mL/kg predicted bodyweight (IQR 5•7-7•1), PEEP was 14•0 cm H 2 O (IQR 11•0-15•0), and driving pressure was 14•0 cm H 2 O (11•2-16•0). Median respiratory system compliance was 31•9 mL/cm H 2 O (26•0-39•9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0-15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. Interpretation In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. Funding Amsterdam University Medical Centers, location Academic Medical Center.
Respiratory muscle ultrasound is used to evaluate the anatomy and function of the respiratory muscle pump. It is a safe, repeatable, accurate, and non-invasive bedside technique that can be successfully applied in different settings, including general intensive care and the emergency department. Mastery of this technique allows the intensivist to rapidly diagnose and assess respiratory muscle dysfunction in critically ill patients and in patients with unexplained dyspnea. Furthermore, it can be used to assess patient-ventilator interaction and weaning failure in critically ill patients. This paper provides an overview of the basic and advanced principles underlying respiratory muscle ultrasound with an emphasis on the diaphragm. We review different ultrasound techniques useful for monitoring of the respiratory muscle pump and possible therapeutic consequences. Ideally, respiratory muscle ultrasound is used in conjunction with other components of critical care ultrasound to obtain a comprehensive evaluation of the critically ill patient. We propose the ABCDE-ultrasound approach, a systematic ultrasound evaluation of the heart, lungs and respiratory muscle pump, in patients with weaning failure.
Writing Group for the PReVENT Investigators
IMPORTANCE It remains uncertain whether invasive ventilation should use low tidal volumes in critically ill patients without acute respiratory distress syndrome (ARDS).OBJECTIVE To determine whether a low tidal volume ventilation strategy is more effective than an intermediate tidal volume strategy.
This meta-analysis demonstrates that chest radiograph has a low sensitivity and reasonable specificity compared with CT for detecting lung pathology in critically ill patients. The studies also investigating lung ultrasound, showed lung ultrasound to be clearly superior to chest radiograph in terms of sensitivity with similar specificity, thereby opting to be the first-line diagnostic tool in these patients.
Significance
There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.