The stethoscope is used as first line diagnostic tool in assessment of patients with pulmonary symptoms. However, there is much debate about the diagnostic accuracy of this instrument. This metaanalysis aims to evaluate the diagnostic accuracy of lung auscultation for the most common respiratory pathologies. Studies concerning adult patients with respiratory symptoms are included. Main outcomes are pooled estimates of sensitivity and specificity with 95% confidence intervals, likelihood ratios (LRs), area under the curve (AUC) of lung auscultation for different pulmonary pathologies and breath sounds. A meta-regression analysis is performed to reduce observed heterogeneity. For 34 studies the overall pooled sensitivity for lung auscultation is 37% and specificity 89%. LRs and AUC of auscultation for congestive heart failure, pneumonia and obstructive lung diseases are low, LR− and specificity are acceptable. Abnormal breath sounds are highly specific for (hemato)pneumothorax in patients with trauma. Results are limited by significant heterogeneity. Lung auscultation has a low sensitivity in different clinical settings and patient populations, thereby hampering its clinical utility. When better diagnostic modalities are available, they should replace lung auscultation. Only in resource limited settings, with a high prevalence of disease and in experienced hands, lung auscultation has still a role.Diagnostic summary measures. The overall pooled sensitivity for lung auscultation is 37% (95% CI: 30-47%) and specificity 89% (95% CI: 85-92%) (see Table 2 and Fig. 2). Table 3 shows the pooled estimates of sensitivity and specificity for the different types of breath sounds: abnormal, decreased or absent breath sounds, crackles, rhonchi, and wheezes. Heterogeneity was significant when considering all outcomes (P < 0.001), but also when restricted to CHF, OLD and pneumonia. Only heterogeneity of study outcomes for HPT was not significant (P = 0.38). Deeks' Funnel Plot for all studies (Fig. 3) suggests publication bias (P = 0.01) when considering all outcomes. Publication bias was not significant, when restricting to CHF (P = 0.18), HPT (P = 0.34), OLD (P = 0.75) and pneumonia (P = 0.99). It must, however, be noted that the estimates of the bias when restricting to CHF and HPT were larger than the estimate of the bias based on all outcomes. Therefore, lack of significance for these pathology groups may be due to the small sample sizes (n = 10 and n = 6, respectively). Estimates of bias in the OLD and pneumonia subgroups were much smaller than the estimate of the bias based on all outcomes and sample sizes were larger compared to other subgroups (n = 22 and n = 29, respectively), suggesting the absence of publication bias for those pathology groups (see e- Fig. 1A-D).Congestive heart failure. Six prospective observational studies included patients with (acute) dyspnoea and compared auscultation with Doppler echocardiography, the Framingham criteria or by an expert panel for CHF [12][13][14][15][16][17] . Considering the res...