Our results demonstrate the selectivity of CPI and CPIII towards the OATP1B/MRP pathway, and the herein reported data further underline the potential of CPI and CPIII as selective and sensitive clinical biomarkers to quantify OATP1B-mediated DDIs.
Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 are drug transporters mediating the active hepatic uptake of their substrates. Because they exhibit overlapping substrate specificities, the contribution of each isoform to the net hepatic uptake needs to be considered when predicting drug-drug interactions. The relative contribution of OATP1B1-and OATP1B3-mediated uptake of statins into hepatocytes was estimated based on either relative transporter protein expression data or relative activity data. Therefore, kinetics of eight statins and OATP1B1-and OATP1B3-specific reference substrates was determined in OATP1B1-and OATP1B3-expressing human embryonic kidney 293 cells and in human cryopreserved hepatocytes. Absolute OATP1B1 and OATP1B3 protein abundance was determined by liquid chromatography-tandem mass spectrometry in all expression systems. Transporter activity data generated in recombinant cell lines were extrapolated to hepatocyte values using relative transporter expression factors (REF) or relative activity factors (RAF). Our results showed a pronounced OATP1B1 and comparatively low OATP1B3 protein expression in the investigated hepatocyte lot. Based on REF scaling, we demonstrated that the active hepatic uptake clearances of reference substrates, atorvastatin, pravastatin, rosuvastatin, and simvastatin were well predicted within twofold error, demonstrating that OATP1B1 and OATP1B3 were major contributors. For other statins, the net hepatic uptake clearance was underpredicted, suggesting the involvement of other hepatic uptake transporters. Summarized, we showed that REF-and RAF-based predictions were highly similar, indicating a direct transporter expressionactivity relationship. Moreover, we demonstrated that the REF-scaling method provided a powerful tool to quantitatively assess the transporterspecific contributions to the net uptake clearance of statins in hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.