Information produced by THOR is an important source for calculating incidence rates of occupational skin disease. A range of reporting groups should also be used when building an overall picture of occupational skin disease incidence in the U.K.
[1] Laser ablation inductively coupled plasma mass spectrometry was used to analyze the individual chambers from tests of foraminiferal fossil and plankton tow Globigerinoides ruber from the southwest Pacific Ocean, from latitudes 3°S to 42°S. The variability of Mg/Ca between chambers of an individual (intraindividual) and individuals of the same population (interindividual), is such that when converted to temperature, the extent of intra-individual and interindividual variability appears to exceed that attributable to either calcification or seasonal temperature variability. The pooled mean chamber Mg/Ca from each core top and plankton tow site demonstrates a significant (p < 0.05) positive correlation with temperature. We derive chamber-specific calibrations where Mg/Ca Ch_F-2 = 0.798 exp 0.070 T , Mg/Ca Ch_F-1 = 0.891 exp 0.067 T and Mg/Ca Ch_F = 0.590 exp 0.072 T . We do not observe any bias between the two morphotypes Gs. ruber ruber and Gs. ruber pyramidalis. The chamber-specific calibrations potentially offset Mg/Ca-based temperature reconstructions if used on bulk (whole) test Mg/Ca or applied to misidentified chambers. Nevertheless, these calibrations can be used to reliably estimate sea surface temperature. Although there is a general overriding temperature control on Mg/Ca, we show that removal of the effect of temperature at each site reveals a lognormal Mg/Ca distribution. This suggests that Mg/Ca variability at each site is also affected by biological mechanism(s) that may control the distribution of interindividual Mg/Ca. In addition, other TE/Ca data (Al/Ca and Mn/Ca) from laser ablation trace element depth profiles can be used to identify detrital or diagenetic phases that may bias the trace element/Ca signal.
In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7–19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high‐resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6–7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.