In fruit fly research, chromosomal deletions are indispensable tools for mapping mutations, characterizing alleles and identifying interacting loci. Most widely used deletions were generated by irradiation or chemical mutagenesis. These methods are labor-intensive, generate random breakpoints and result in unwanted secondary mutations that can confound phenotypic analyses. Most of the existing deletions are large, have molecularly undefined endpoints and are maintained in genetically complex stocks. Furthermore, the existence of haplolethal or haplosterile loci makes the recovery of deletions of certain regions exceedingly difficult by traditional methods, resulting in gaps in coverage. Here we describe two methods that address these problems by providing for the systematic isolation of targeted deletions in the D. melanogaster genome. The first strategy used a P element-based technique to generate deletions that closely flank haploinsufficient genes and minimize undeleted regions. This deletion set has increased overall genomic coverage by 5-7%. The second strategy used FLP recombinase and the large array of FRT-bearing insertions described in the accompanying paper to generate 519 isogenic deletions with molecularly defined endpoints. This second deletion collection provides 56% genome coverage so far. The latter methodology enables the generation of small custom deletions with predictable endpoints throughout the genome and should make their isolation a simple and routine task.
Presenilins are components of the gamma-secretase protein complex that mediates intramembranous cleavage of betaAPP and Notch proteins. A C. elegans genetic screen revealed two genes, aph-1 and pen-2, encoding multipass transmembrane proteins, that interact strongly with sel-12/presenilin and aph-2/nicastrin. Human aph-1 and pen-2 partially rescue the C. elegans mutant phenotypes, demonstrating conserved functions. The human genes must be provided together to rescue the mutant phenotypes, and the inclusion of presenilin-1 improves rescue, suggesting that they interact closely with each other and with presenilin. RNAi-mediated inactivation of aph-1, pen-2, or nicastrin in cultured Drosophila cells reduces gamma-secretase cleavage of betaAPP and Notch substrates and reduces the levels of processed presenilin. aph-1 and pen-2, like nicastrin, are required for the activity and accumulation of gamma-secretase.
To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). KEYWORDS RNAi; Drosophila; screens; phenotypes; functional genomics A striking finding from the genomic revolution and wholegenome sequencing is the amount of information missing on gene function. Although Drosophila is arguably the bestunderstood multicellular organism and a proven model system for human diseases, mutations mapped to specific genes with readily detectable phenotypes have been isolated for 15% of the .13919 annotated fly coding genes (http:// flybase.org/; FlyBase R6.06). The lack of information on the majority of genes (the "phenotype gap") suggests that researchers have been unable to either assay their roles experimentally and/or resolve issues of functional redundancy. In addition, some phenotypes may be only detected on specific diets and environments. Further, our understanding of the function of many genes for which we have some information is limited by pleiotropy, whereby an earlier function of the gene prevents analysis of later functions.The availability of in vivo RNAi has revolutionized the ability of Drosophila researchers to disrupt the activity of single genes with spatial and temporal resolution (Dietzl et al. 2007; see review by Perrimon et al. 2010), and thus address the phenotype gap. Motivated by the power of the approach and the needs of the community, three large-scale efforts, the Vienna Drosophila RNAi Center (VDRC, http:// stockcenter.vdrc.at/control/main), the National Institute of Genetics (NIG, http://www.shigen.nig.ac.jp/fly/nigfly/index.jsp), and the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) (http://www.flyrnai.org/TRiP-HOME. html) have over the years generated large numbers of RNAi lines that aim to cover all Drosophila genes. These resources are proving invaluable to address a myriad of questions in various biological and biomedical fields including but not limite...
Multiple stringent confinement strategies should be used whenever possible
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.