Prenatal stress or glucocorticoid administration has persisting "programming" effects on offspring in rodents and other model species. Multiple doses of glucocorticoids are in widespread use in obstetric practice. To examine the clinical relevance of glucocorticoid programming, we gave 50, 120, or 200 μg/kg/d of dexamethasone (dex50, dex120, or dex200) orally from mid-term to a singleton-bearing nonhuman primate, Chlorocebus aethiops (African vervet). Dexamethasone dose-dependently reduced maternal cortisol levels without effecting maternal blood pressure, glucose, electrolytes, or weight gain. Birth weight was unaffected by any dexamethasone dose, although postnatal growth was attenuated after dex120 and dex200. At 8 months of age, dex120 and dex200 offspring showed impaired glucose tolerance and hyperinsulinemia, with reduced (approximately 25%) pancreatic β cell number at 12 months. Dex120 and dex200 offspring had increased systolic and diastolic blood pressures at 12 months. Mild stress produced an exaggerated cortisol response in dex200 offspring, implying hypothalamic-pituitary-adrenal axis programming. The data are compatible with the extrapolation of the glucocorticoid programming hypothesis to primates and indicate that repeated glucocorticoid therapy and perhaps chronic stress in humans may have long-term effects.
Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes.
Because asthmatic patients show increased nerve growth factor (NGF) serum levels, we examined the effect of NGF on airway function. Intravenously administered NGF potentiates the histamine- induced bronchoconstriction with a maximum of over 200% in anesthetized spontaneously breathing guinea pigs. Doses of 8 ng and 80 ng NGF/kg body weight induce a significant hyperresponsiveness to histamine. NGF itself does not affect airway reactivity. Airway hyperresponsiveness is observed 30 min and 3 h after NGF administration, and has disappeared after 24 h. The neurokinin-1 receptor antagonist SR 140333 completely blocks the NGF-induced hyperresponsiveness, pointing to a role for tachykinins. This is the first report showing a direct relation between peripherally administered NGF and airway hyperresponsiveness. Taking into consideration that plasma NGF levels have been shown to be elevated in asthmatic patients, our result points to an important role for NGF in the pathogenesis of asthma.
ObjectiveExaggerated central nervous system (CNS) inflammatory responses to peripheral stressors may be implicated in delirium. This study hypothesised that the IL-1β family is involved in delirium, predicting increased levels of interleukin-1β (IL-1β) and decreased IL-1 receptor antagonist (IL-1ra) in the cerebrospinal fluid (CSF) of elderly patients with acute hip fracture. We also hypothesised that Glial Fibrillary Acidic Protein (GFAP) and interferon-γ (IFN-γ) would be increased, and insulin-like growth factor 1 (IGF-1) would be decreased.MethodsParticipants with acute hip fracture aged > 60 (N = 43) were assessed for delirium before and 3–4 days after surgery. CSF samples were taken at induction of spinal anaesthesia. Enzyme-linked immunosorbent assays (ELISA) were used for protein concentrations.ResultsPrevalent delirium was diagnosed in eight patients and incident delirium in 17 patients. CSF IL-1β was higher in patients with incident delirium compared to never delirium (incident delirium 1.74 pg/ml (1.02–1.74) vs. prevalent 0.84 pg/ml (0.49–1.57) vs. never 0.66 pg/ml (0–1.02), Kruskal–Wallis p = 0.03). CSF:serum IL-1β ratios were higher in delirious than non-delirious patients. CSF IL-1ra was higher in prevalent delirium compared to incident delirium (prevalent delirium 70.75 pg/ml (65.63–73.01) vs. incident 31.06 pg/ml (28.12–35.15) vs. never 33.98 pg/ml (28.71–43.28), Kruskal–Wallis p = 0.04). GFAP was not increased in delirium. IFN-γ and IGF-1 were below the detection limit in CSF.ConclusionThis study provides novel evidence of CNS inflammation involving the IL-1β family in delirium and suggests a rise in CSF IL-1β early in delirium pathogenesis. Future larger CSF studies should examine the role of CNS inflammation in delirium and its sequelae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.