We report the fabrication of VO2-based two terminal devices with ∼125-nm gaps between the two electrodes, using a simple, cost-effective method employing optical lithography and shadow evaporation. Current-voltage characteristics of the obtained devices show a main abrupt metal-insulator transition (MIT) in the VO2 film with voltage threshold values of several volts, followed by secondary MIT steps due to the nanostructured morphology of the layer. By applying to the two-terminal device a pulsed voltage over the MIT threshold, the measured switching time was as low as 4.5 ns and its value does not significantly change with device temperature, supporting the evidence of an electronically driven MIT.
Among transition metal nitrides, molybdenum nitrides have been much less studied even though their mechanical properties as well as their electrical and catalytic properties make them very attractive for many applications. The δ-MoN phase of hexagonal structure is a potential candidate for an ultra-incompressible and hard material and can be compared with c-BN and diamond. The predicted superconducting temperature of the metastable MoN phase of NaCl-B1-type cubic structure is the highest of all refractory carbides and nitrides. The composition of molybdenum nitride films as well as the structures and properties depend on the parameters of the process used to deposit the films. They are also strongly correlated to the electronic structure and chemical bonding. An unusual mixture of metallic, covalent and ionic bonding is found in the stoichiometric compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.