BackgroundTripartite motif (TRIM) proteins constitute a family of proteins that share a conserved tripartite architecture. The recent discovery of the anti-HIV activity of TRIM5α in primate cells has stimulated much interest in the potential role of TRIM proteins in antiviral activities and innate immunity.Principal FindingsTo test if TRIM genes are up-regulated during antiviral immune responses, we performed a systematic analysis of TRIM gene expression in human primary lymphocytes and monocyte-derived macrophages in response to interferons (IFNs, type I and II) or following FcγR-mediated activation of macrophages. We found that 27 of the 72 human TRIM genes are sensitive to IFN. Our analysis identifies 9 additional TRIM genes that are up-regulated by IFNs, among which only 3 have previously been found to display an antiviral activity. Also, we found 2 TRIM proteins, TRIM9 and 54, to be specifically up-regulated in FcγR-activated macrophages.ConclusionsOur results present the first comprehensive TRIM gene expression analysis in primary human immune cells, and suggest the involvement of additional TRIM proteins in regulating host antiviral activities.
We addressed the role of innate immunity in the protection against HIV-1 infection by studying NK cell function in 37 Vietnamese intravascular drug users (IDUs), who appeared to remain HIV-1 uninfected despite many years of high-risk exposure (exposed uninfected, EU), 10 IDUs who underwent seroconversion and 28 unexposed blood donors. Main results were: NK cell lytic activities against both the NK-susceptible K562 cell line and the NK-resistant Daudi cell line were significantly augmented in EU IDUs compared with either controls or seroconverters before or after seroconversion; NK cells producing the cytokines IFN-γ and TNF-α and the β chemokines CCL3, CCL4, and CCL5 were also increased in the EU IDUs, either after in vitro activation or without stimulation. The finding of an enhanced NK cell function in EU IDUs, especially compared with IDUs who became HIV-1 infected, supports the hypothesis that NK cells contribute to the protection against HIV-1 infection.
The human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) genomes encode several auxiliary proteins that have increasingly shown their importance in the virus-host relationship. One of these proteins, Vpx, is unique to the HIV-2/SIVsm lineage and is critical for viral replication in macrophages. The functional basis for this requirement, as well as the Vpx mode of action, has remained unexplained, and it is all the more enigmatic that HIV type 1 (HIV-1), which has no Vpx counterpart, can infect macrophages. Here, we underscore DCAF1 as a critical host effector of Vpx in its ability to mediate infection and long-term replication of HIV-2 in human macrophages. Vpx assembles with the CUL4A-DDB1 ubiquitin ligase through DCAF1 recruitment. Precluding Vpx present in the incoming virions from recruiting DCAF1 in target macrophages leads to a postentry block characterized by defective accumulation of HIV-2 reverse transcripts. In addition, Vpx from SIVsm functionally complements Vpx-defective HIV-2 in a DCAF1-binding-dependent manner. Altogether, our data point to a mechanism in which Vpx diverts the Cul4A-DDB1 DCAF1 ligase to inactivate an evolutionarily conserved factor, which restricts macrophage infection by HIV-2 and closely related simian viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.