The starting flows past a two-dimensional oscillating and translating airfoil are investigated by visualization experiments and numerical calculations. The airfoil, elliptic in cross-section, is set in motion impulsively and subjected simultaneously to a steady translation and a harmonic oscillation in pitch. The incidence of the airfoil is variable between 0° and 45° and the Reynolds number based on the chord length is between 1500 and 10000. The main object of the present study is to reveal some marked characteristics of the unsteady vortices produced from the oscillating airfoil set at large incidences in excess of the static stall angle. Another purpose is to examine, in some detail, the respective and combined effects of the major experimental parameters on the vortex wake development. It is shown that, in general, the dominant parameter of the flow is the reduced frequency not only when the airfoil oscillates at incidences close to the static stall angle but also at larger incidences. It is also demonstrated that, as the pitching frequency is increased, the patterns of the vortex wake are dependent on the product of the reduced frequency and the amplitude rather than on the frequency itself. It is noted that the combined effect of a high reduced frequency and a large amplitude can give rise to cyclic superposition of leading-edge vortices from which a gradually expanding standing vortex is developed on the upper surface.
SUMMARYUnsteady viscous flow around a large-amplitude and high-frequency oscillating aerofoil is examined in this paper by numerical simulation and experimental visualization. The numerical method is based on the combination of a fourth-order Hermitian finite difference scheme for the stream function equation and a classical second-order scheme to solve the vorticity transport equation. Experiments are carried out by a traditional visualization method using solid tracers suspended in water. The comparison between numerical and experimental results is found to be satisfactory. Time evolutions of the flow structure are presented for Reynolds numbers of 3 x lo3 and lo4. The influence of the amplitude and frequency of the oscillating motion on the dynamic stall is analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.