We are motivated by the goal of generalist robots that can complete a wide range of tasks across many environments. Critical to this is the robot's ability to acquire some metric of task success or reward, which is necessary for reinforcement learning, planning, or knowing when to ask for help. For a general-purpose robot operating in the real world, this reward function must also be able to generalize broadly across environments, tasks, and objects, while depending only on on-board sensor observations (e.g. RGB images). While deep learning on large and diverse datasets has shown promise as a path towards such generalization in computer vision and natural language, collecting high quality datasets of robotic interaction at scale remains an open challenge. In contrast, "in-the-wild" videos of humans (e.g. YouTube) contain an extensive collection of people doing interesting tasks across a diverse range of settings. In this work, we propose a simple approach, Domain-agnostic Video Discriminator (DVD), that learns multitask reward functions by training a discriminator to classify whether two videos are performing the same task, and can generalize by virtue of learning from a small amount of robot data with a broad dataset of human videos. We find that by leveraging diverse human datasets, this reward function (a) can generalize zero shot to unseen environments, (b) generalize zero shot to unseen tasks, and (c) can be combined with visual model predictive control to solve robotic manipulation tasks on a real WidowX200 robot in an unseen environment from a single human demo.
Learning from diverse offline datasets is a promising path towards learning general purpose robotic agents. However, a core challenge in this paradigm lies in collecting large amounts of meaningful data, while not depending on a human in the loop for data collection. One way to address this challenge is through task-agnostic exploration, where an agent attempts to explore without a task-specific reward function, and collect data that can be useful for any downstream task. While these approaches have shown some promise in simple domains, they often struggle to explore the relevant regions of the state space in more challenging settings, such as vision based robotic manipulation. This challenge stems from an objective that encourages exploring everything in a potentially vast state space. To mitigate this challenge, we propose to focus exploration on the important parts of the state space using weak human supervision. Concretely, we propose an exploration technique, Batch Exploration with Examples (BEE), that explores relevant regions of the state-space, guided by a modest number of human provided images of important states. These human provided images only need to be collected once at the beginning of data collection and can be collected in a matter of minutes, allowing us to scalably collect diverse datasets, which can then be combined with any batch RL algorithm. We find that BEE is able to tackle challenging vision-based manipulation tasks both in simulation and on a real Franka robot, and observe that compared to task-agnostic and weakly-supervised exploration techniques, it (1) interacts more than twice as often with relevant objects, and (2) improves downstream task performance when used in conjunction with offline RL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.