ONYX-015 is an adenovirus that lacks the E1B-55K gene product for p53 degradation. Thus, ONYX-015 was conceived as an oncolytic virus that would selectively replicate in p53-defective tumor cells. Here we show that loss of E1B-55K leads to the induction, but not the activation, of p53 in ONYX-015-infected primary cells. We use a novel adenovirus mutant, ONYX-053, to demonstrate that loss of E1B-55K-mediated late viral RNA export, rather than p53 degradation, restricts ONYX-015 replication in primary cells. In contrast, we show that tumor cells that support ONYX-015 replication provide the RNA export function of E1B-55K. These data reveal that tumor cells have altered mechanisms for RNA export and resolve the controversial role of p53 in governing ONYX-015 oncolytic selectivity.
We have engineered a human adenovirus, ONYX-411, that selectively replicates in human tumor cells, but not normal cells, depending upon the status of their retinoblastoma tumor suppressor protein (pRB) pathway. Early and late viral gene expression as well as DNA replication were significantly reduced in a functional pRB-pathway-dependent manner, resulting in a restricted replication profile similar to that of nonreplicating adenoviruses in normal cells both in vitro and in vivo. In contrast, the viral life cycle and tumor cell killing activity of ONYX-411 was comparable to that of wild-type adenovirus following infection of human tumor cells in vitro as well as after systemic administration in tumor-bearing animals.
In this report, we describe a vector system that specifically delivers transgene products to tumors following intravenous (i.v.) administration. The Escherichia coli cytosine deaminase (CD) gene was placed in the E3B region of the tumor-selective, replicationcompetent adenovirus ONYX-411, under the control of endogenous viral late gene regulatory elements. Thus, CD expression was directly coupled to the tumor-selective replication of the viral vector. In vitro, CD was expressed efficiently in various human cancer cell lines tested but not in cultured normal human cells, including human hepatocytes. Following i.v. administration into nude mice carrying human tumor xenografts, robust CD activity was detected only in tumors but not in liver or other normal tissues. Levels of CD activity in the tumors increased progressively following i.v. virus administration, correlating closely with virus replication in vivo. Subsequent administration of 5-fluorocytosine (5-FC) demonstrated a trend to improve the antitumor efficacy of these viruses in a mouse xenograft model, presumably due to the intratumoral conversion of 5-FC to the chemotherapeutic drug 5-fluorouracil. We show that the combination of a highly selective oncolytic virus, ONYX-411, with the strategic use of the viral E3B region for transgene insertion provides a powerful platform that allows for tumor-specific, persistent and robust transgene expression after i.v. administration. This technology provides an opportunity to enhance greatly both safety and efficacy of cancer gene therapy.
The coronavirus disease 2019 (COVID-19) pandemic continues to spread globally, highlighting the urgent need for safe and effective vaccines that could be rapidly mobilized to immunize large populations. We report the preclinical development of a self-amplifying mRNA (SAM) vaccine encoding a prefusion stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein and demonstrate strong cellular and humoral immune responses at low doses in mice and rhesus macaques. The homologous prime-boost vaccination regimen of SAM at 3, 10 and 30 μg induced potent neutralizing antibody (nAb) titers in rhesus macaques following two SAM vaccinations at all dose levels, with the 10 μg dose generating geometric mean titers (GMT) 48-fold greater than the GMT of a panel of SARS-CoV-2 convalescent human sera. Spike-specific T cell responses were observed with all tested vaccine regimens. SAM vaccination provided protective efficacy against SARS-CoV-2 challenge as both a homologous prime-boost and as a single boost following ChAd prime, demonstrating reduction of viral replication in both the upper and lower airways. The SAM vaccine is currently being evaluated in clinical trials as both a homologous prime-boost regimen at low doses and as a boost following heterologous prime.
The coronavirus disease 2019 (COVID-19) pandemic continues to spread globally, highlighting the urgent need for safe and effective vaccines that could be rapidly mobilized to immunize large populations. We report the preclinical development of a self-amplifying mRNA (SAM) vaccine encoding a prefusion stabilized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein and demonstrate potent cellular and humoral immune responses at low doses in mice and rhesus macaques. The homologous prime-boost vaccination regimen of SAM at 3, 10 and 30 μg induced potent neutralizing antibody titers in rhesus macaques following two SAM vaccinations at all dose levels, with the 10 μg dose generating geometric mean titers (GMT) 48-fold greater than the GMT of a panel of SARS-CoV-2 convalescent human sera. Spike-specific T cell responses were observed at all dose levels. SAM vaccination provided protective efficacy against SARS-CoV-2 challenge as both a homologous prime-boost and as a single boost following ChAd prime, demonstrating reduction of viral replication in both the upper and lower airways. Protection was most effective with a SAM prime-boost vaccination regimen at 10 and 30 μg and with a ChAd/SAM heterologous prime-boost regimen. The SAM vaccine is currently being evaluated in clinical trials as both a homologous prime-boost regimen at low doses and as a boost following heterologous prime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.