Supplemental Digital Content is available in the text.
Ventricular arrhythmia and subsequent sudden cardiac death (SCD) due to acute myocardial infarction (AMI) is one of the most frequent causes of death in humans. Lethal ventricular arrhythmias like ventricular fibrillation (VF) prior to hospitalization have been reported to occur in more than 10% of all AMI cases and survival in these patients is poor. Identification of risk factors and mechanisms for VF following AMI as well as implementing new risk stratification models and therapeutic approaches is therefore an important step to reduce mortality in people with high cardiovascular risk. Studying spontaneous VF following AMI in humans is challenging as it often occurs unexpectedly in a low risk subgroup. Large animal models of AMI can help to bridge this knowledge gap and are utilized to investigate occurrence of arrhythmias, involved mechanisms and therapeutic options. Comparable anatomy and physiology allow for this translational approach. Through experimental focus, using state-of-the-art technologies, including refined electrical mapping equipment and novel pharmacological investigations, valuable insights into arrhythmia mechanisms and possible interventions for arrhythmia-induced SCD during the early phase of AMI are now beginning to emerge. This review describes large experimental animal models of AMI with focus on first AMI-associated ventricular arrhythmias. In this context, epidemiology of first AMI, arrhythmogenic mechanisms and various potential therapeutic pharmacological targets will be discussed.
Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT = QT/(RR/100)). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 mice. Circadian rhythms in QT intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2, respectively (p = 0.15). A diurnal rhythm in QT intervals was only found in WT mice. QT intervals display clear diurnal and circadian rhythms in both WT and KChIP2. The amplitude of the circadian rhythm in QT is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2, respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.
Ventricular fibrillation (VF) during acute myocardial infarction (AMI) is an important contributor to sudden cardiac death. Large animal models are widely used to study AMI-induced arrhythmia, but the mode of AMI induction ranges from thoracotomy and surgical ligation of a coronary vessel (open chest) to minimally invasive techniques, including balloon occlusion (closed chest). How the choice of induction affects arrhythmia development is unclear. The aim of this study was to compare an open-chest and a closed-chest model with regard to hemodynamics, electrophysiology, and arrhythmia development. Forty-two female Danish Landrace pigs (20 open chest, 22 closed chest) were anesthetized, and occlusion of the mid-left anterior descending coronary artery was performed for 60 min. Opening the chest reduced blood pressure and cardiac output (Δ −22 mmHg, Δ −1.5 L/min from baseline, both P < 0.001 intragroup). Heart rate decreased with opening of the chest but increased with balloon placement ( P < 0.001). AMI-induced ST elevation was lower in the open-chest group ( P < 0.001). Premature ventricular contractions occurred in two distinct phases (0–15 and 15–40 min), the latter of which was delayed in the open-chest group ( P = 0.005). VF occurred in 7 out of 20 and 12 out of 22 pigs in the open-chest and closed-chest groups, respectively ( P = 0.337), with longer time-to-VF in the open-chest group (23.4 ± 1.2 min in open chest and 17.8 ± 1.4 min in closed chest; P = 0.007). In summary, opening the chest altered hemodynamic parameters and delayed the onset of ventricular arrhythmias. Hence, in the search for mechanisms and novel treatments of AMI-induced arrhythmia, caution should be taken when choosing between or comparing the results from these two models. NEW & NOTEWORTHY We demonstrated pronounced differences in hemodynamic parameters and time course of ventricular arrhythmias in regard to mode of infarct induction. Inducing myocardial infarction by thoracotomy and subsequent ligation decreased blood pressure and cardiac output and delayed the onset of ventricular arrhythmia, whereas balloon occlusion resulted in higher heart rates during infarct.
Aims Acute myocardial infarction (AMI) is associated with intracellular Ca2+ build-up. In healthy ventricles, small conductance Ca2+-activated K+ (SK) channels are present but do not participate in repolarization. However, SK current is increased in chronic myocardial infarction and heart failure, and recently, SK channel inhibition was demonstrated to reduce arrhythmias in AMI rats. Hence, we hypothesized that SK channel inhibitors (NS8593 and AP14145) could reduce arrhythmia development during AMI in a porcine model. Methods and results Twenty-seven pigs were randomized 1:1:1 to control, NS8593, or AP14145. Haemodynamic and electrophysiological parameters [electrocardiogram (ECG) and monophasic action potentials (MAP)] were continuously recorded. A balloon was placed in the mid-left anterior descending artery, blinded to treatment. Infusion lasted from 10 min before occlusion until 30 min after. Occlusion was maintained for 1 h, followed by 2 h of reperfusion. Upon occlusion, cardiac output dropped similarly in all groups, while blood pressure remained stable. Heart rate decreased in the NS8593 and AP14145 groups. QRS duration increased upon occlusion in all groups but more prominently in AP14145-treated pigs. Inhibition of SK channels did not affect QT interval. Infarct MAP duration shortened comparably in all groups. Ventricular fibrillation developed in 4/9 control-, 4/9 AP14145-, and 2/9 NS8593-treated pigs. Ventricular tachycardia was rarely observed in either group, whereas ventricular extrasystoles occurred comparably in all groups. Conclusion Inhibition of SK channels was neither beneficial nor detrimental to ventricular arrhythmia development in the setting of AMI in this porcine model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.