Linear description (LD) of conformation traits was introduced in horse breeding to minimise subjectivity in scoring. However, recent studies have shown that LD traits show essentially the same problems as traditionally scored traits, such as data converging around the mean value with very small standard deviations. To improve the assessment of conformation traits of horses, we investigated the application of the recently described horse shape space model based upon 403 digitised photographs of 243 Franches-Montagnes (FM) stallions and extracted joint angles based on specific landmark triplets. Repeatability, reproducibility and consistency of the resulting shape data and joint angles were assessed with Procrustes ANOVA (Rep) and intra-class correlation coefficients (ICC). Furthermore, we developed a subjective score to classify the posture of the horses on each photograph. We derived relative warp scores (PCs) based upon the digitised photos conducting a principal component analysis (PCA). The PCs of the shapes and joint angles were compared to the posture scores and to the linear description data using linear mixed effect models including significant posture scores as random factors. The digitisation process was highly repeatable and reproducible for the shape (Rep = 0.72–0.99, ICC = 0.99). The consistency of the shape was limited by the age and posture (p < 0.05). The angle measurements were highly repeatable within one digitiser. Between digitisers, we found a higher variability of ICC values (ICC = 0.054–0.92), indicating digitising error in specific landmarks (e.g. shoulder point). The posture scores were highly repeatable (Fleiss’ kappa = 0.713–0.857). We identified significant associations (p(X2) < 0.05) with traits describing the withers height, shoulder length and incline, overall leg conformation, walk and trot step length. The horse shape data and angles provide additional information to explore the morphology of horses and therefore can be applied to improve the knowledge of the genetic architecture of LD traits.
For centuries humans have been fascinated by the natural beauty of horses in motion and their different gaits. Gait classification (GC) is commonly performed through visual assessment and reliable, automated methods for real-time objective GC in horses are warranted. In this study, we used a full body network of wireless, high sampling-rate sensors combined with machine learning to fully automatically classify gait. Using data from 120 horses of four different domestic breeds, equipped with seven motion sensors, we included 7576 strides from eight different gaits. GC was trained using several machine-learning approaches, both from feature-extracted data and from raw sensor data. Our best GC model achieved 97% accuracy. Our technique facilitated accurate, GC that enables in-depth biomechanical studies and allows for highly accurate phenotyping of gait for genetic research and breeding. Our approach lends itself for potential use in other quadrupedal species without the need for developing gait/animal specific algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.