Abstract. Models that simulate the evolution of polar firn are important for several applications in glaciology, including converting ice-sheet elevation change measurements to mass change and interpreting climate records in ice cores. We have developed the Community Firn Model (CFM), an open-source, modular model framework designed to simulate numerous physical processes in firn. The modules include firn densification, heat transport, meltwater percolation and refreezing, water isotope diffusion, and firn-air diffusion. The CFM is designed so that new modules can be added with ease. In this paper, we first describe the CFM and its modules. We then demonstrate the CFM's usefulness in two model applications that utilize two of its novel aspects. The CFM currently has the ability to run any of 13 previously published firn densification models, and in the first application we compare those models' results when they are forced with regional climate model outputs for Summit, Greenland. The results show that the models do not agree well (spread greater than 10 %) when predicting depth-integrated porosity, firn age, or the trend in surface elevation change. In the second application, we show that the CFM's coupled firn-air and firn densification models can simulate noble gas records from an ice core better than a firn-air model alone.
Abstract. Models that simulate evolution of polar firn are important for several applications in glaciology, including converting ice-sheet elevation-change measurements to mass change and interpreting climate records in ice cores. We have developed the Community Firn Model (CFM), an open-source, modular model framework designed to simulate numerous physical processes in firn. The modules include firn densification, heat transport, meltwater percolation and refreezing, water-isotope diffusion, and firn-air diffusion. The CFM is designed so that new modules can be added with ease. In this paper, we first describe the CFM and its modules. We then demonstrate the CFM's usefulness in two model applications that utilize two of its novel aspects. The CFM currently has the ability to run any of 13 previously published firn-densification models, and in the first application we compare those models' results when they are forced with regional climate model outputs for Summit, Greenland. The results show that the models do not agree well (spread greater than 10 %) when predicting depth-integrated porosity, firn age, or trend in surface-elevation change trend. In the second application, we show that the CFM's coupled firn-air and firn-densification models can simulate noble-gas records from an ice core better than a firn-air model alone.
Ice-sheet mass-balance estimates derived from repeat satellite-altimetry observations require accurate calculation of spatiotemporal variability in firn-air content (FAC). However, firn-compaction models remain a large source of uncertainty within mass-balance estimates. In this study, we investigate one process that is neglected in FAC estimates derived from firn-compaction models: enhanced layer thinning due to horizontal divergence. We incorporate a layer-thinning scheme into the Community Firn Model. At every time step, firn layers first densify according to a firn-compaction model and then thin further due to an imposed horizontal divergence rate without additional density changes. We find that horizontal divergence on Thwaites (THW) and Pine Island Glaciers can reduce local FAC by up to 41% and 18%, respectively. We also assess the impact of temporal variability of horizontal divergence on FAC. We find a 15% decrease in FAC between 2007 and 2016 due to horizontal divergence at a location that is characteristic of lower THW. This decrease accounts for 16% of the observed surface lowering, whereas climate variability alone causes negligible changes in FAC at this location. Omitting transient horizontal divergence in estimates of FAC leads to an overestimation of ice loss via satellite-altimetry methods in regions of dynamic ice flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.