Transition of patients with PKU from pediatric to adult care seems to be successful in Leipzig. Patients were mostly satisfied with the transition situation. Still, some suggestions for improvements appeared to be desirable. During transition medical care and metabolic control were stable. However, with regard to psychosocial and socioeconomic data differences to the control population were detected.
Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen accountable for the coronavirus disease 2019 (COVID-19) pandemic. Viral entry via binding of the receptor binding domain (RBD) located within the S1 subunit of the SARS-CoV-2 Spike (S) protein to its target receptor angiotensin converting enzyme (ACE) 2 is a key step in cell infection. The efficient transition of the virus is linked to a unique protein called open reading frame (ORF) 8. As SARS-CoV-2 infections can develop into life threatening lower respiratory syndromes, effective therapy options are urgently needed. Several publications propose vitamin D treatment, although its mode of action against COVID-19 is not fully elucidated. It is speculated that vitamin D's beneficial effects are mediated by up regulating LL-37, a well known antimicrobial peptide with antiviral effects. Methods: Recombinantly expressed SARS-CoV-2 S protein, the extended S1 subunit (S1e), the S2 subunit (S2), the receptor binding domain (RBD), and ORF8 were used for surface plasmon resonance (SPR) studies to investigate LL-37's ability to bind to SARS-CoV-2 proteins and to localize its binding site within the S protein. Binding competition studies were conducted to confirm an inhibitory action of LL-37 on the attachment of SARS-CoV-2 S protein to its entry receptor ACE2. Results: We could show that LL-37 binds to SARS-CoV-2 S protein (LL-37/S-Strep KD = 407 nM, LL-37/S-His KD = 414 nM) with the same affinity, as SARS-CoV-2 binds to hACE2 (hACE2/S-Strep KD = 374 nM, hACE2/S-His KD = 368 nM). The binding is not restricted to the RBD of the S protein, but rather distributed along the entire length of the protein. Interaction between LL-37 and ORF8 was detected with a KD of 294 nM. Further, inhibition of the binding of S-Strep (IC50 = 735 nM), S1e (IC50 = 168 nM), and RBD (IC50 = 126 nM) to hACE2 by LL-37 was demonstrated. Conclusions: We have revealed a biochemical link between vitamin D, LL-37, and COVID-19 severity. SPR analysis demonstrated that LL-37 binds to SARS-CoV-2 S protein and inhibits binding to its receptor hACE2, and most likely viral entry into the cell. This study supports the prophylactic use of vitamin D to induce LL-37 that protects from SARS-CoV-2 infection, and the therapeutic administration of vitamin D for the treatment of COVID-19 patients. Further, our results provide evidence that the direct use of LL-37 by inhalation and systemic application may reduce the severity of COVID-19.
Immunoassays are a standard diagnostic tool that assesses immunity in severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. However, immunoassays do not provide information about contaminating antigens or cross-reactions and might exhibit inaccurately high sensitivity and low specificity. We aimed to gain insight into the serological immune response of SARS-CoV-2 patients by immunoblot analysis. We analyzed serum immunoglobulins IgM, -A, and -G directed against SARS-CoV-2 proteins by immunoblot analysis from 12 infected patients. We determined IgG isotype antibodies by commercially available ELISA and assessed the clinical parameters of inflammation status and kidney and liver injury. Unexpectedly, we found no correlation between the presence of antibodies and the future course of the disease. However, attention should be paid to the parameters CRP, IL-6, and LDH. We found evidence of antibody cross-reactivity, which questions the reliability of results for serum samples that tested negative for anti-SARS-CoV-2 antibodies when assessed by immunoassays. Nevertheless, for the detection of IgG anti-SARS-CoV-2 antibodies, our data suggest that the use of the spike glycoprotein in immunoassays should be sufficient to identify positive patients. Using a combination of the spike glycoprotein and the open reading frame 8 protein could prove to be the best way of detecting anti-SARS-CoV-2 IgM antibodies.
Beneficial effects of vitamin D on COVID-19 progression have been discussed in several studies. Vitamin D stimulates the expression of the antimicrobial peptide LL-37, and evidence shows that LL-37 can antagonize SARS-CoV-2. Therefore, we investigated the association between LL-37 and vitamin D serum levels and the severity of COVID-19. To this end, 78 COVID-19 patients were divided into 5 groups according to disease severity. We determined serum levels of LL-37, vitamin D, and routine laboratory parameters. We demonstrated a correlation of CRP, IL-6, PCT, leukocyte count, and LDH with the severity of COVID-19. Our study did not demonstrate a direct relationship between serum levels of LL-37 and vitamin D and the severity of COVID-19. LL-37 is produced by granulocytes and released at the site of inflammation. Therefore, the analysis of LL-37 in broncho-alvelolar lavage rather than in patient serum seems critical. However, since LL-37 is produced by granulocytes, we determined serum LL-37 levels as a function of leukocyte count. The LL-37/leukocyte count ratio correlates highly significantly inversely proportional with COVID-19 severity. Our results indicate that the LL-37/leukocyte count ratio could be used to assess the risk of COVID-19 progression as early as hospital admission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.