Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen accountable for the coronavirus disease 2019 (COVID-19) pandemic. Viral entry via binding of the receptor binding domain (RBD) located within the S1 subunit of the SARS-CoV-2 Spike (S) protein to its target receptor angiotensin converting enzyme (ACE) 2 is a key step in cell infection. The efficient transition of the virus is linked to a unique protein called open reading frame (ORF) 8. As SARS-CoV-2 infections can develop into life threatening lower respiratory syndromes, effective therapy options are urgently needed. Several publications propose vitamin D treatment, although its mode of action against COVID-19 is not fully elucidated. It is speculated that vitamin D's beneficial effects are mediated by up regulating LL-37, a well known antimicrobial peptide with antiviral effects. Methods: Recombinantly expressed SARS-CoV-2 S protein, the extended S1 subunit (S1e), the S2 subunit (S2), the receptor binding domain (RBD), and ORF8 were used for surface plasmon resonance (SPR) studies to investigate LL-37's ability to bind to SARS-CoV-2 proteins and to localize its binding site within the S protein. Binding competition studies were conducted to confirm an inhibitory action of LL-37 on the attachment of SARS-CoV-2 S protein to its entry receptor ACE2. Results: We could show that LL-37 binds to SARS-CoV-2 S protein (LL-37/S-Strep KD = 407 nM, LL-37/S-His KD = 414 nM) with the same affinity, as SARS-CoV-2 binds to hACE2 (hACE2/S-Strep KD = 374 nM, hACE2/S-His KD = 368 nM). The binding is not restricted to the RBD of the S protein, but rather distributed along the entire length of the protein. Interaction between LL-37 and ORF8 was detected with a KD of 294 nM. Further, inhibition of the binding of S-Strep (IC50 = 735 nM), S1e (IC50 = 168 nM), and RBD (IC50 = 126 nM) to hACE2 by LL-37 was demonstrated. Conclusions: We have revealed a biochemical link between vitamin D, LL-37, and COVID-19 severity. SPR analysis demonstrated that LL-37 binds to SARS-CoV-2 S protein and inhibits binding to its receptor hACE2, and most likely viral entry into the cell. This study supports the prophylactic use of vitamin D to induce LL-37 that protects from SARS-CoV-2 infection, and the therapeutic administration of vitamin D for the treatment of COVID-19 patients. Further, our results provide evidence that the direct use of LL-37 by inhalation and systemic application may reduce the severity of COVID-19.
Hemicentins are large proteins of the extracellular matrix that belong to the fibulin family and play pivotal roles during development and homeostasis of a variety of invertebrate and vertebrate tissues. However, bona fide interaction partners of hemicentins have not been described as yet. Here, applying surface plasmon resonance spectroscopy and co-immunoprecipitation, we identify the basement membrane protein nidogen-2 (NID2) as a binding partner of mammalian hemicentin-1 (HMCN1), in line with the formerly described essential role of mouse HMCN1 for basement membrane integrity. HMCN1 binds to the same protein domain of NID2 (G2) as formerly shown for laminins, but with an approximately ten-fold lower affinity and in a competitive manner. Immunofluorescence and immunogold labellings reveal that HMCN1/Hmcn1 is localized closely attached to basement membranes and in partial overlap with NID2/Nid2a in different tissues of mouse and zebrafish. Genetic knockout and antisense-mediated knockdown studies in zebrafish further show that loss of Nid2a leads to similar defects in fin fold morphogenesis as loss of Laminin-α5 (Lama5) or Hmcn1. Combined partial loss-of-function studies further indicate that nid2a genetically interacts with both hmcn1 and lama5. Together, this suggests that despite their mutually exclusive physical binding, hemicentins, nidogens and laminins tightly cooperate and support each other during formation, maintenance and function of basement membranes to confer tissue linkage.
The widely expressed microfibril-forming collagen VI is subject to proteolytic cleavage and it has been proposed that the cleaved off C-terminal Kunitz domain (C5) of the α3 chain is an adipokine important for tumor progression and fibrosis. Under the name “endotrophin” the C5 fragment has also been shown to be a potent biomarker for fibro-inflammatory diseases. However, the biochemical mechanisms behind endotrophin activity have not been investigated. In earlier studies, the anthrax toxin receptor 1 was found to bind to C5, but this potential interaction has not been further studied. Given the proposed physiological role of endotrophin we aimed to determine how the endotrophin signal is transmitted to the recipient cells. Surprisingly, we could not detect any interaction between endotrophin and anthrax toxin receptor 1 or its close relative, anthrax toxin receptor 2. Moreover, we could not detect binding of fully assembled collagen VI to either anthrax toxin receptor. We also performed similar experiments with the collagen VI surface receptor NG2 (CSPG4). We could confirm that NG2 is a collagen VI receptor that binds to assembled collagen VI, but not to the cleaved C5/endotrophin. A cellular receptor for C5/endotrophin therefore still remains elusive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.