A previously unknown haplotype of the plant pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) was found in cultivated carrots and parsnips in eastern Finland. That same haplotype was found in western Finland, over 300 km away, in the family Polygonaceae, the species Fallopia convolvulus (wild buckwheat) and Persicaria lapathifolia (pale persicaria) growing as weeds within carrot and parsnip fields. The infected plants, both apiaceous and polygonaceous, showed symptoms of foliar discolouration. This is the first report of Lso bacteria in plants of the family Polygonaceae. The finding that the polygonaceous plants infected with a previously unknown haplotype of Lso were growing among the apiaceous plants infected with Lso haplotype C suggests that these two haplotypes might be transmitted by different vectors. Phylogenetic analyses showed that the new haplotype, called haplotype H, is distinct from the previously characterized haplotypes and appears to have diverged early from their common ancestor. Multi-locus sequence analysis revealed four different sequence types (strains) within the haplotype H. These findings suggest that the haplotype H is likely to be endemic in northern Europe and that the genetic diversity within the Lso species is higher than previously assumed.
We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.