'Candidatus Liberibacter solanacearum' (CLso) haplotype C is associated with disease in carrots and transmitted by the carrot psyllid Trioza apicalis. To identify possible other sources and vectors of this pathogen in Finland, samples were taken of wild plants within and near the carrot fields, the psyllids feeding on these plants, parsnips growing next to carrots, and carrot seeds. For analyzing the genotype of the CLso-positive samples, a multilocus sequence typing (MLST) scheme was developed. CLso haplotype C was detected in 11% of the T. anthrisci samples, in 35% of the Anthriscus sylvestris plants with discoloration, and in parsnips showing leaf discoloration. MLST revealed that the CLso in T. anthrisci and most A. sylvestris plants represent different strains than the bacteria found in T. apicalis and the cultivated plants. CLso haplotype D was detected in 2 of the 34 carrot seed lots tested, but was not detected in the plants grown from these seeds. Phylogenetic analysis by unweighted-pair group method with arithmetic means clustering suggested that haplotype D is more closely related to haplotype A than to C. A novel, sixth haplotype of CLso, most closely related to A and D, was found in the psyllid T. urticae and stinging nettle (Urtica dioica, Urticaceae), and named haplotype U.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.
A previously unknown haplotype of the plant pathogen ‘Candidatus Liberibacter solanacearum’ (Lso) was found in cultivated carrots and parsnips in eastern Finland. That same haplotype was found in western Finland, over 300 km away, in the family Polygonaceae, the species Fallopia convolvulus (wild buckwheat) and Persicaria lapathifolia (pale persicaria) growing as weeds within carrot and parsnip fields. The infected plants, both apiaceous and polygonaceous, showed symptoms of foliar discolouration. This is the first report of Lso bacteria in plants of the family Polygonaceae. The finding that the polygonaceous plants infected with a previously unknown haplotype of Lso were growing among the apiaceous plants infected with Lso haplotype C suggests that these two haplotypes might be transmitted by different vectors. Phylogenetic analyses showed that the new haplotype, called haplotype H, is distinct from the previously characterized haplotypes and appears to have diverged early from their common ancestor. Multi-locus sequence analysis revealed four different sequence types (strains) within the haplotype H. These findings suggest that the haplotype H is likely to be endemic in northern Europe and that the genetic diversity within the Lso species is higher than previously assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.