Epithelial cells perform important roles in the formation and function of organs and the genesis of many solid tumors. A distinguishing feature of epithelial cells is their apicobasal polarity and the presence of apical junctions that link cells together. The interacting proteins Par-6 (a PDZ and CRIB domain protein) and aPKC (an atypical protein kinase C) localize apically in fly and mammalian epithelial cells and are important for apicobasal polarity and junction formation. Caenorhabditis elegans PAR-6 and PKC-3/aPKC also localize apically in epithelial cells, but a role for these proteins in polarizing epithelial cells or forming junctions has not been described. Here, we use a targeted protein degradation strategy to remove both maternal and zygotic PAR-6 from C. elegans embryos before epithelial cells are born. We find that PKC-3 does not localize asymmetrically in epithelial cells lacking PAR-6, apical junctions are fragmented, and epithelial cells lose adhesion with one another. Surprisingly, junction proteins still localize apically, indicating that PAR-6 and asymmetric PKC-3 are not needed for epithelial cells to polarize. Thus, whereas the role of PAR-6 in junction formation appears to be widely conserved, PAR-6-independent mechanisms can be used to polarize epithelial cells.
Neural crest (NC) cells are a migratory cell population synonymous with vertebrate evolution. They generate a wide variety of cell and tissue types during embryonic and adult development including cartilage and bone, connective tissue, pigment and endocrine cells as well as neurons and glia amongst many others. Such incredible lineage potential combined with a limited capacity for self-renewal, which persists even into adult life, demonstrates that NC cells bear the key hallmarks of stem and progenitor cells. In this review, we describe the identification, characterization and isolation of NC stem and progenitor cells from different tissues in both embryo and adult organisms. We discuss their specific properties and their potential application in cell-based tissue and disease-specific repair.
Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype–phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1+/− mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies.
SUMMARYThe apicobasal polarity of epithelial cells is critical for organ morphogenesis and function, and loss of polarity can promote tumorigenesis. Most epithelial cells form when precursor cells receive a polarization cue, develop distinct apical and basolateral domains and assemble junctions near their apical surface. The scaffolding protein PAR-3 regulates epithelial cell polarity, but its cellular role in the transition from precursor cell to polarized epithelial cell has not been determined in vivo. Here, we use a targeted protein-degradation strategy to remove PAR-3 from C. elegans embryos and examine its cellular role as intestinal precursor cells become polarized epithelial cells. At initial stages of polarization, PAR-3 accumulates in cortical foci that contain Ecadherin, other adherens junction proteins, and the polarity proteins PAR-6 and PKC-3. Using live imaging, we show that PAR-3 foci move apically and cluster, and that PAR-3 is required to assemble E-cadherin into foci and for foci to accumulate at the apical surface. We propose that PAR-3 facilitates polarization by promoting the initial clustering of junction and polarity proteins that then travel and accumulate apically. Unexpectedly, superficial epidermal cells form apical junctions in the absence of PAR-3, and we show that PAR-6 has a PAR-3-independent role in these cells to promote apical junction maturation. These findings indicate that PAR-3 and PAR-6 function sequentially to position and mature apical junctions, and that the requirement for PAR-3 can vary in different types of epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.