Abstract:The "nexus" is a potentially very appropriate approach to enhance resource efficiency and good governance in transboundary basins. Until now, however, evidence has been confined to isolated case studies and the nexus approach remains largely undefined. The methodology presented in this paper, developed for preparing a series of nexus assessments of selected river basins under the Water Convention of the United Nations Economic Commission for Europe (UNECE), is a timely contribution to this ongoing debate. The nexus assessment of a transboundary basin has the objective of identifying trade-offs and impacts across sectors and countries and to propose possible policy measures and technical actions at national and transboundary levels to reduce intersectoral tensions. This is done jointly with policy makers and local experts. Compared to an Integrated Water Resource Management approach, the water energy food ecosystems nexus approach concurrently considers multiple sectors and their evolution. This offers the opportunity to better involve key economic sectors-energy and agriculture in particular-in the dialogue over transboundary water resource uses, protection and management.
The sustainable development goals (SDGs) challenge markets, regulators and practitioners to achieve multiple objectives on water, food and energy. This calls for responses that are coordinated and scaled appropriately. Learning from waterenergy-food nexus could support much-needed building of links between the separate SDGs. The concept has highlighted how risks manifest when blinkered development and management of water, food and energy reduce resource security across sectors and far-reaching scales. However, three under-studied dimensions of these risks must be better considered in order to identify leverage points for sustainable development: first, externalities and shared risks across multiple scales; second, innovative government mechanisms for shared risks; and third, negotiating the balance between silos, politics and power in addressing shared risks.
Groundwater pumping causes depletion of groundwater storage. The rate of depletion incurred by any new well is gradually decreasing and eventually becomes zero in the long run, after induced recharge and reduction of natural discharge of groundwater combined (capture) have become large enough to balance the pumping rate completely. If aquifer-wide aggregated pumping rates are comparatively large, then such a new dynamic equilibrium may not be reached and groundwater storage may become exhausted. Decisions to pump groundwater are motivated by people’s need for domestic water and by expected benefits of using water for a variety of activities. But how much finally is abstracted from an aquifer (or is considered to be an optimal aggregate abstraction rate) depends on a wide range of other factors as well. Among these, the constraint imposed by the groundwater balance (preventing aquifer exhaustion) has received ample attention in the professional literature. However, other constraints or considerations related to changes in groundwater level due to pumping are observed as well and in many cases they even may dominate the decisions on pumping. This paper reviews such constraints or considerations, examines how they are or may be incorporated in the decision-making process, and evaluates to what extent the resulting pumping rates and patterns create conditions that comply with principles of sustainability
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.