The present-day geographic distribution of individual species of five taxonomic groups (plants, dragonflies, butterflies, herpetofauna and breeding birds) is relatively well-known on a small scale (5 Â 5 km squares) in Flanders (north Belgium). These data allow identification of areas with a high diversity within each of the species groups. However, differences in mapping intensity and coverage hamper straightforward comparisons of species-rich areas among the taxonomic groups. To overcome this problem, we modelled the species richness of each taxonomic group separately using various environmental characteristics as predictor variables (area of different land use types, biotope diversity, topographic and climatic features). We applied forward stepwise multiple regression to build the models, using a subset of well-surveyed squares. A separate set of equally well-surveyed squares was used to test the predictions of the models. The coincidence of geographic areas with high predicted species richness was remarkably high among the four faunal groups, but much lower between plants and each of the four faunal groups. Thus, the four investigated faunal groups can be used as relatively good indicator taxa for one another in Flanders, at least for their within-group species diversity. A mean predicted species diversity per mapping square was also estimated by averaging the standardised predicted species richness over the five taxonomic groups, to locate the regions that were predicted as being the most species-rich for all five investigated taxonomic groups together. Finally, the applicability of predictive modelling in nature conservation policy both in Flanders and in other regions is discussed.
Het Instituut voor Natuur-en Bosonderzoek (INBO) is het Vlaams onderzoeks-en kenniscentrum voor natuur en het duurzame beheer en gebruik ervan. Het INBO verricht onderzoek en levert kennis aan al wie het beleid voorbereidt, uitvoert of erin geïnteresseerd is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.