Applications of deep belief nets (DBN) to various problems have been the subject of a number of recent studies ranging from image classification and speech recognition to audio classification. In this study we apply DBNs to a natural language understanding problem. The recent surge of activity in this area was largely spurred by the development of a greedy layer-wise pretraining method that uses an efficient learning algorithm called contrastive divergence (CD). CD allows DBNs to learn a multi-layer generative model from unlabeled data and the features discovered by this model are then used to initialize a feed-forward neural network which is fine-tuned with backpropagation. We compare a DBN-initialized neural network to three widely used text classification algorithms: support vector machines (SVM), boosting and maximum entropy (MaxEnt). The plain DBN-based model gives a call-routing classification accuracy that is equal to the best of the other models. However, using additional unlabeled data for DBN pretraining and combining DBN-based learned features with the original features provides significant gains over SVMs, which, in turn, performed better than both MaxEnt and Boosting.
Models for statistical spoken language understanding (SLU) systems are conventionally trained using supervised discriminative training methods. In many cases, however, labeled data necessary for these supervised techniques is not readily available necessitating a laborious data collection and annotation effort. This often results into data sets that are not expansive enough to cover adequately all patterns of natural language phrases that occur in the target applications. Word embedding features alleviate data and feature sparsity issues by learning mathematical representation of words and word associations in the continuous space. In this work, we present techniques to obtain task and domain specific word embeddings and show their usefulness over those obtained from generic unsupervised data. We also show how we transfer these embeddings from one language to another enabling training of a multilingual spoken language understanding system. Index Terms-spoken language understanding; natural language processing; word embedding; named entity recognition; vector space models
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.