We describe a lattice generation method that is exact, i.e. it satisfies all the natural properties we would want from a lattice of alternative transcriptions of an utterance. This method does not introduce substantial overhead above one-best decoding. Our method is most directly applicable when using WFST decoders where the WFST is "fully expanded", i.e. where the arcs correspond to HMM transitions. It outputs lattices that include HMM-state-level alignments as well as word labels. The general idea is to create a state-level lattice during decoding, and to do a special form of determinization that retains only the best-scoring path for each word sequence. This special determinization algorithm is a solution to the following problem: Given a WFST A, compute a WFST B that, for each input-symbolsequence of A, contains just the lowest-cost path through A.
Unexpected stimuli are a challenge to any machine learning algorithm. Here, we identify distinct types of unexpected events when general-level and specific-level classifiers give conflicting predictions. We define a formal framework for the representation and processing of incongruent events: Starting from the notion of label hierarchy, we show how partial order on labels can be deduced from such hierarchies. For each event, we compute its probability in different ways, based on adjacent levels in the label hierarchy. An incongruent event is an event where the probability computed based on some more specific level is much smaller than the probability computed based on some more general level, leading to conflicting predictions. Algorithms are derived to detect incongruent events from different types of hierarchies, different applications, and a variety of data types. We present promising results for the detection of novel visual and audio objects, and new patterns of motion in video. We also discuss the detection of Out-Of- Vocabulary words in speech recognition, and the detection of incongruent events in a multimodal audiovisual scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.